Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Panjang gelombang

Panjang gelombang gelombang sinus, λ, dapat diukur antara dua titik dengan fase yang sama, seperti antara puncak (di atas), atau palung (di bawah), atau sesuai dengan zero crossing seperti yang ditunjukkan.

Dalam fisika, panjang gelombang adalah periode spasial dari gelombang periodik — jarak di mana bentuk gelombang berulang.[1][2] Ini adalah jarak antara titik-titik yang sesuai berturut-turut dari fase yang sama pada gelombang, seperti dua puncak yang berdekatan, palung, atau zero crossings, dan merupakan karakteristik dari kedua gelombang perjalanan dan gelombang berdiri, serta pola gelombang spasial lainnya.[3][4] Kebalikan dari panjang gelombang disebut frekuensi spasial. Panjang gelombang biasanya ditunjuk oleh huruf Yunani lambda (λ). Istilah panjang gelombang juga kadang-kadang diterapkan untuk gelombang termodulasi, dan ke amplop sinusoidal gelombang termodulasi atau gelombang yang dibentuk oleh gangguan beberapa sinusoid.[5]

Dengan asumsi gelombang sinusoidal bergerak pada kecepatan gelombang tetap, panjang gelombang berbanding terbalik dengan frekuensi gelombang: gelombang dengan frekuensi yang lebih tinggi memiliki panjang gelombang yang lebih pendek, dan frekuensi yang lebih rendah memiliki panjang gelombang yang lebih panjang.[6]

Panjang gelombang tergantung pada medium (misalnya, ruang hampa udara, atau air) yang dilalui gelombang. Contoh gelombang adalah gelombang suara, cahaya, gelombang air dan sinyal listrik periodik dalam konduktor. Gelombang suara adalah variasi dalam tekanan udara, sedangkan dalam cahaya dan radiasi elektromagnetik lainnya kekuatan listrik dan medan magnet bervariasi. Gelombang air adalah variasi ketinggian badan air. Dalam getaran kisi kristal, posisi atom bervariasi.

Kisaran panjang gelombang atau frekuensi untuk fenomena gelombang disebut spektrum. Nama ini berasal dengan spektrum cahaya tampak tetapi sekarang dapat diterapkan ke seluruh spektrum elektromagnetik serta spektrum suara atau spektrum getaran.

  1. ^ Hecht, Eugene (1987). Optics (edisi ke-2nd). Addison Wesley. hlm. 15–16. ISBN 0-201-11609-X. 
  2. ^ Brian Hilton Flowers (2000). "§21.2 Periodic functions". An introduction to numerical methods in C++ (edisi ke-2nd). Cambridge University Press. hlm. 473. ISBN 0-19-850693-7. 
  3. ^ Raymond A. Serway; John W. Jewett (2006). Principles of physics (edisi ke-4th). Cengage Learning. hlm. 404, 440. ISBN 0-534-49143-X. 
  4. ^ A. A. Sonin (1995). The surface physics of liquid crystals. Taylor & Francis. hlm. 17. ISBN 2-88124-995-7. 
  5. ^ Keqian Zhang & Dejie Li (2007). Electromagnetic Theory for Microwaves and Optoelectronics. Springer. hlm. 533. ISBN 978-3-540-74295-1. 
  6. ^ Theo Koupelis & Karl F. Kuhn (2007). In Quest of the UniversePerlu mendaftar (gratis). Jones & Bartlett Publishers. hlm. 102. ISBN 0-7637-4387-9. wavelength lambda light sound frequency wave speed. 

Previous Page Next Page