In matematica, in particolare in algebra commutativa, un anello locale regolare è un anello commutativo unitario locale noetheriano tale che il numero di generatori del suo ideale massimale è uguale alla sua dimensione di Krull. Un anello noetheriano è regolare se ogni sua localizzazione (dove è un suo ideale massimale) è un anello locale regolare.
Il termine "regolare" proviene dalla geometria algebrica: se è un punto di una varietà algebrica, chiedere che l'anello dei germi di funzioni nel punto sia un anello regolare è equivalente a chiedere che la dimensione dello spazio tangente alla varietà in sia uguale alla dimensione della varietà stessa; quando questo avviene, il punto è detto non singolare (o regolare).