Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Dimensione (spazio vettoriale)

In matematica, la dimensione di uno spazio vettoriale è la cardinalità di una sua base.[1] Se tale cardinalità è finita, la dimensione coincide con il numero di vettori che compongono la base considerata. È talvolta chiamata dimensione di Hamel o dimensione algebrica, per distinguerla da altri tipi di dimensione. Tutte le basi di uno stesso spazio vettoriale hanno la stessa cardinalità, come stabilisce il teorema della dimensione per spazi vettoriali, e dunque la dimensione di uno spazio vettoriale è univocamente definita. La dimensione di uno spazio vettoriale sul campo è indicata con . Si dice che è finito-dimensionale o infinito-dimensionale se la dimensione di è rispettivamente finita o infinita.

  1. ^ Lang, S., p. 49.

Previous Page Next Page