Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Idrocarburi policiclici aromatici

Struttura tridimensionale (modello space-filling) del corannulene, IPA strutturalmente formato dalla condensazione di 5 anelli benzenici e un anello centrale di ciclopentano.

Gli idrocarburi policiclici aromatici, noti anche con l'acronimo IPA (o PAH, dall'inglese, polycyclic aromatic hydrocarbons), sono una classe di idrocarburi costituiti da più anelli aromatici, quali quello del benzene, fusi fra loro in un'unica struttura molecolare, generalmente planare; in quanto idrocarburi non contengono eteroatomi nel ciclo o nei sostituenti.[1][2]

Alcuni considerano il naftalene (idrocarburo aromatico biciclico) il più semplice esempio di IPA,[3] mentre altri fanno iniziare la classe dagli idrocarburi aromatici triciclici, cioè antracene e fenantrene.[4][5]

Si ritrovano naturalmente nel carbon fossile e nel petrolio, particolarmente da quelle qualità ricche in aromatici, dalle quali si estraggono.
Sono potenti inquinanti atmosferici e la loro formazione per cause antropiche avviene nel corso di combustioni incomplete di combustibili fossili, legname, grassi, fogliame, incenso e composti organici in generale, quali quelli provenienti dai rifiuti urbani, ritrovandosi quindi nei loro fumi, da quelli da biomasse al fumo di tabacco, ritrovandosi anche nei cibi cotti, particolarmente nei processi di carbonizzazione ad alta temperatura, come le cotture alla griglia delle carni o nel pesce affumicato.[6][7] Sono inquinanti che generano allerta perché alcuni di essi sono stati identificati come cancerogeni, mutageni e teratogeni. Gli IPA ad alto peso molecolare, come il benzo[e]pirene e il benzo[a]pirene, sono presenti in elevate quantità in catrami, bitumi, peci e carboni, nonché nei prodotti correlati come gli asfalti. Inoltre possono derivare da nerofumo e fuliggine di legna o comunque si ricollegano a fonti pirogeniche. Gli IPA leggeri come naftalene e fluorene sono inquinanti ubiquitari che, per la loro solubilità in acqua relativamente maggiore, possono giungere ad inquinare le falde sotterranee.
Sono stati trovati nel mezzo interstellare, in comete e in meteoriti e sono tra le molecole ipoteticamente candidate a fungere da stampo base per la catalisi di reazioni coinvolte nella formazione delle prime forme di vita.[8][9]

  1. ^ I. L. Finar, X. Polycyclic Aromatic Hydrocarbons, in ORGANIC CHEMISTRY The fundamental principles, II, Fourth Edition, Longmans, 1963, p. 339.
  2. ^ Michael B. Smith e Jerry March, March's advanced organic chemistry: reactions, mechanisms, and structure, Eighth edition, Wiley, 2020, p. 58, ISBN 978-1-119-37180-9.
  3. ^ Polycyclic Aromatic Hydrocarbons (PAHs) (PDF), su epa.gov.
  4. ^ (EN) Polycyclic Aromatic Hydrocarbons (PAHs): What Are Polycyclic Aromatic Hydrocarbons (PAHs)? | Environmental Medicine | ATSDR, su atsdr.cdc.gov, 26 maggio 2023. URL consultato il 7 settembre 2024.
  5. ^ (EN) Hyunok Choi, Roy Harrison e Hannu Komulainen, Polycyclic aromatic hydrocarbons, World Health Organization, 2010. URL consultato il 7 settembre 2024.
  6. ^ Nadir Yilmaz e A. Burl Donaldson, Evidence of PAH production under lean combustion conditions, in Fuel, vol. 86, n. 15, 1º ottobre 2007, pp. 2377–2382, DOI:10.1016/j.fuel.2007.02.015. URL consultato il 14 ottobre 2024.
  7. ^ (EN) Ana Lúcia C. Lima, John W. Farrington e Christopher M. Reddy, Combustion-Derived Polycyclic Aromatic Hydrocarbons in the Environment—A Review, in Environmental Forensics, vol. 6, n. 2, 2005-06, pp. 109–131, DOI:10.1080/15275920590952739. URL consultato il 14 ottobre 2024.
  8. ^ (EN) Sarah González Henao, Vytis Karanauskas e Samuel M. Drummond, Planetary Minerals Catalyze Conversion of a Polycyclic Aromatic Hydrocarbon to a Prebiotic Quinone: Implications for Origins of Life, in Astrobiology, vol. 22, n. 2, 1º febbraio 2022, pp. 197–209, DOI:10.1089/ast.2021.0024. URL consultato il 14 ottobre 2024.
  9. ^ (EN) L. J. Allamandola, PAHS AND ASTROBIOLOGY, in EAS Publications Series, vol. 46, 2011, pp. 305–317, DOI:10.1051/eas/1146032. URL consultato il 14 ottobre 2024.

Previous Page Next Page