Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Metodo di eliminazione di Gauss

In matematica, il metodo di eliminazione di Gauss, spesso abbreviato in MEG, è un algoritmo, che prende il nome dal matematico tedesco Carl Friedrich Gauss, usato in algebra lineare per determinare le soluzioni di un sistema di equazioni lineari, per calcolare il rango o l'inversa di una matrice.

L'algoritmo, attraverso l'applicazione di specifiche operazioni sulle righe (o sulle colonne) dette operazioni elementari, riduce la matrice in una forma detta a scalini. La matrice in forma a scalini rende immediato il calcolo del rango della matrice (che sarà uguale al numero di pivot) e particolarmente semplice la risoluzione del sistema lineare a essa associato.

Un'estensione a tale metodo, nota come metodo di eliminazione di Gauss-Jordan, dal matematico tedesco Wilhelm Jordan, riduce ulteriormente la matrice in una forma detta a scalini ridotta, permettendo di calcolarne anche l'inversa.

Nonostante sia comunemente attribuito a Gauss, una prima applicazione del MEG compare già nel II secolo a.C. all'interno del Jiuzhang Suanshu (Nove capitoli sulle arti matematiche), scritto da matematici cinesi durante la dinastia Han.[1]


Previous Page Next Page