Il paradosso di Russell, formulato dal filosofo e logico britannico Bertrand Russell tra il 1901 e il 1902,[1][2] è una delle antinomie più importanti della storia della filosofia e della logica.[3] Può essere enunciato così:
«L'insieme di tutti gli insiemi che non appartengono a sé stessi appartiene a sé stesso se e solo se non appartiene a sé stesso.»
Si tratta più propriamente di un'antinomia che di un paradosso: un paradosso è una conclusione logica e non contraddittoria che si scontra con il nostro modo abituale di vedere le cose, mentre un'antinomia è una proposizione che risulta autocontraddittoria sia nel caso che sia vera, sia nel caso che sia falsa.[4] In pratica, l'antinomia è un particolare paradosso logico che si applica a frasi che, se sono vere, risultano false, se false, risultano vere. Un'antica antinomia è quella di Epimenide che, nella sua versione più popolare, recita così: "Il cretese Epimenide afferma che tutti i Cretesi mentono. In questa sua affermazione mente o dice il vero?". Si comprende bene che, in ambo le risposte, si giunge ad una contraddizione.
L'antinomia di Russell può essere espressa in modo "intuitivo" per mezzo di altre formulazioni, come il paradosso del barbiere o quello del bibliotecario; inoltre, essa è basata su un ragionamento analogo a quello che porta sia al paradosso dell'eterologicità di Grelling-Nelson,[3][4] che, in ultima analisi, anche al paradosso del mentitore.
Il paradosso di Russell ebbe un ruolo fondamentale nella crisi dei fondamenti della matematica, la quale a sua volta ebbe un peso notevole nella più ampia crisi che interessò le certezze fondamentali della fisica, della filosofia e appunto della matematica all'inizio del XX secolo, crisi che spesso è associata al crollo delle dottrine filosofiche di stampo positivista.[3] In particolare, dimostrò la contraddittorietà della teoria ingenua (o intuitiva) degli insiemi di Georg Cantor, che faceva uso di strumenti matematici analoghi a quelli su cui si era basato Gottlob Frege nel tentativo di produrre una completa fondazione della matematica sulla logica (tale tentativo va sotto il nome di Logicismo). Nel tentativo di risolvere l'antinomia, in modo tale da conservare la validità dell'idea (alla base del Logicismo) per cui la matematica può essere fondata completamente dalla logica, Russell sviluppò in collaborazione con Alfred North Whitehead la teoria dei tipi, esposta nel loro libro Principia Mathematica.[3]