Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Problema di Apollonio

Date 3 circonferenze distinte si vogliono costruire 8 circonferenze tangenti ad esse. Si determinano innanzitutto i luoghi geometrici dei centri di tutte le circonferenze, tangenti a ogni coppia delle circonferenze date. Ogni coppia delle circonferenze date ammette due iperboli con la proprietà del detto luogo geometrico. Poiché vi sono tre circonferenze date, il numero totale delle iperboli è 6. I punti comuni a ogni 3 rami di tali iperboli sono i centri delle 8 circonferenze cercate

Il problema di Apollonio (dal nome dello scienziato Apollonio di Perga) è un problema geometrico di tangenza tra circonferenze ed è formulato nei seguenti termini:

«Date tre circonferenze, eventualmente degeneri, determinare le eventuali circonferenze tangenti a quelle date».'

Se le tre circonferenze sono tangenti tra di loro, il raggio della quarta è determinato dal teorema di Descartes.


Previous Page Next Page