Un processo di Poisson, dal nome del matematico francese Siméon-Denis Poisson, è un processo stocastico che simula il manifestarsi di eventi che siano indipendenti l'uno dall'altro e che accadano continuamente nel tempo. Il processo è definito da una collezione di variabili aleatorie per che vengono viste come il numero di eventi occorsi dal tempo 0 al tempo Inoltre il numero di eventi tra il tempo e il tempo è dato come ed ha una distribuzione di Poisson. Ogni traiettoria del processo (ovvero ogni possibile mappa da a dove appartiene allo spazio di probabilità su cui è definita ) è una funzione a gradino sui numeri interi
Il processo di Poisson è un processo a tempo continuo: la sua controparte a tempo discreto è il processo di Bernoulli. Il processo di Poisson è uno dei più famosi processi di Lévy. I processi di Poisson sono anche un esempio di catena di Markov a tempo continuo.