Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Teoria assiomatica degli insiemi

La teoria assiomatica degli insiemi è una versione della teoria degli insiemi che definisce gli insiemi sulla base di alcuni assiomi, in modo tale da evitare i paradossi derivati dalla formulazione della teoria ingenua degli insiemi.

La teoria degli insiemi è una branca della matematica sviluppata principalmente dal matematico tedesco Georg Cantor alla fine del XIX secolo. Inizialmente controversa, la teoria degli insiemi è arrivata ad avere il ruolo di teoria fondamentale nella matematica moderna, nel senso di una teoria invocata per giustificare le assunzioni fatte riguardo all'esistenza degli oggetti matematici (come i numeri o le funzioni) e delle loro proprietà.

Le formulazioni formali della teoria degli insiemi hanno giocato anche un ruolo fondamentale nello specificare un ideale di rigore matematico nelle dimostrazioni. Mentre i concetti basilari della teoria degli insiemi sono usati ovunque in matematica, la teoria in sé è seguita come tema specialistico da un numero piccolo di matematici e logici. Si deve ricordare inoltre che ci sono matematici che usano e promuovono diversi approcci ai fondamenti della matematica.

I concetti basilari della teoria degli insiemi sono "insieme" e "appartenenza". Un insieme è pensato come una collezione di oggetti, chiamati elementi (o membri) dell'insieme. In matematica, gli elementi di un insieme sono oggetti matematici qualsiasi, e in particolare possono essere insiemi. Quindi si parla dell'insieme N dei numeri naturali { 0, 1, 2, 3, 4, ... }, dell'insieme dei numeri reali, e dell'insieme delle funzioni che associano numeri naturali a numeri naturali; ma anche, ad esempio, dell'insieme { 0, 2, N } che ha come elementi i numeri 0 e 2 e l'insieme N.

Inizialmente fu sviluppata quella che ora è chiamata teoria "ingenua" o "intuitiva" degli insiemi (vedi teoria ingenua degli insiemi). Si scoprì che lasciando la possibilità di eseguire qualsiasi operazione sugli insiemi si arrivava a paradossi (come il paradosso di Russell). Per affrontare questi problemi si dovette ricostruire la teoria degli insiemi, questa volta con un approccio assiomatico. Un esempio di teoria degli insiemi assiomatica è la teoria di Zermelo-Fraenkel.


Previous Page Next Page