Šiam straipsniui ar jo daliai reikia daugiau nuorodų į patikimus šaltinius. Jūs galite padėti Vikipedijai įrašydami tinkamas išnašas ar nuorodas į patikimus šaltinius. |
Daugdara – topologinė erdvė, kurios kiekvieno taško aplinka yra artima euklidinei erdvei[1]. Tiksliau tariant, kiekvienas n-matės daugdaros taškas turi aplinką, homeomorfišką n-matei euklidinei erdvei. Tiesė ir apskritimas yra vienmatė daugdara, bet aštuoniukė – ne. Dvimatės daugdaros labai dažnai vadinamos paviršiais. Pastarųjų pavyzdžiai yra plokštuma, sfera, toras; visos šios trys daugdaros gali būti realios trimatės erdvės įdėtimis (angl. embedding), bet kai kurios tokiomis būti negali: Kleino butelis ir realioji projekcinė plokštuma.
Nors kiekvieno daugdaros taško artimoji aplinka yra visiškai artima euklidinei erdvei, globaliu mastu taip nėra. Pavyzdžiui, visas sferos paviršius nėra euklidinė erdvė, bet atskiri jos regionai gali būti atvaizduoti euklidinėje plokštumoje (sakykime, žemėlapyje). Daugdaros kontekste tokia „projekcija“ vadinama atvaizdžiu. Kai regionas pakliūva į du gretimus atvaizdžius, gaunamas jų vaizdas nebūna visiškai identiškas, todėl reikalinga tam tikra transformacija, susiejanti tuos pačius taškus, kuri vadinama perėjimo schema (angl. transition map).
Daugdaros samprata užima svarbią vietą šiuolaikinėje geometrijoje ir matematinėje fizikoje, nes leidžia painias struktūras aprašyti sąlyginai gerai suprantamų euklidinės erdvės savybių parametrais. Daugdaros natūraliai randasi kaip sprendinių aibės, kai nagrinėjamos lygčių sistemos ir funkcijų grafai.