Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Topologija

Mėbijaus juosta, turinti tik vieną paviršių ir tik vieną kraštinę, yra vienas iš daugybės objektų, studijuojamų topologijoje.

Topologija (gr. τοπος = topos 'paviršius, vieta' + λογος = logos 'mokslas') – mokslas apie tolydžius (netrūkius) paviršius, apie erdvės savybes, kurios nepakinta, atliekant tolydžias deformacijas, pavyzdžiui, transformuojant (tempiant, lenkiant, bet ne perplėšiant ar suklijuojant) paviršius ir keičiant paviršiaus elementų susietumą ir (ar) orientuojamumą.[1] Griežtai matematiškai tai yra atvirų aibių rinkinių tyrimas, kai tam tikra aibė vaizduojama kaip topologinė erdvė. Svarbios topologinės savybės yra susietumas ir kompaktiškumas.

Topologijos tyrimų sritis atsiskyrė jungiant tam tikrus geometrijos dalykus ir aibių teoriją, siekiant išsiaiškinti tokias sąvokas kaip erdvė, jos matavimai ir transformacijos. Pirmines idėjas sutinkame Gotfrydo Leibnico veikaluose, kuris jau XVII a. kalbėjo apie lot. geometria situs (graikų ir lotynų kalbų hibridinis darinys, reiškiantis „vietos geometriją“) ir lot. analysis situs (vietos analizė). Oilerio Septynių Karaliaučiaus tiltų problema ir briaunainio savybė neginčytinai yra pirmosios teoremos, kuriomis grindžiama topologija. Topologijos terminą XIX a. įvedė Johanas Listingas (Johann Benedict Listing), bet pati topologinės erdvės idėja buvo suformuluota tik pirmame XX a. dešimtmetyje. Nepaisant neskubios pradžios, XX a. viduryje topologija jau tapo svarbia matematikos šaka.

Šiuolaikinę topologiją sudaro kelios specializuotos šakos:

  • Bendroji topologija nustato šio mokslo pamatinius dalykus, tyrinėja topologinių erdvių savybes ir ieško naujų sampratų, atskleidžiančių topologinius objektus. Čia nagrinėjamos tokios bendrosios savybės kaip kompaktiškumas ir susietumas.
  • Algebrinė topologija ieško būdų išmatuoti jungumo (angl. connectivity) laipsnius, pasitelkiant algebrinius darinius, kaip homologinės ir homotopinės grupės.
  • Diferencialinė topologija tai šaka, nagrinėjanti topologines diferencijuojamųjų funkcijų ir diferencijuojamųjų daugdarų savybes. Ji glaudžiai susijusi su diferencialine geometrija, abi kartu jos formuoja geometrinę diferencijuojamųjų daugdarų teoriją.
  • Geometrinė topologija visų pirma tiria daugdaras ir jų įdėtis į kitas daugdaras. Ypač aktyviai čia tyrinėjama nedidelio matiškumo (keturių ir mažiau matavimų) paviršių topologija. Be to šioje srityje nagrinėjama mazgų teorija ir matematiniai mazgai.
Trimatis vaizdas: sustorintas trilapis mazgas, paprasčiausias netrivialus mazgas.
  1. Rimas Norvaiša. Topologija. Visuotinė lietuvių enciklopedija, T. XXIV (Tolj–Veni). – Vilnius: Mokslo ir enciklopedijų leidybos institutas, 2015. 31-32 psl.

Previous Page Next Page






Topologie AF Topolochía AN طوبولوجيا Arabic طوبولوجيا ARZ Topoloxía AST Topologiya AZ Топология BA Topolohiya BCL Тапалогія BE Тапалёгія BE-X-OLD

Responsive image

Responsive image