De euclidische meetkunde is een wiskundig systeem dat wordt toegeschreven aan de Griekse wiskundige Euclides van Alexandrië. Zijn werk, de Elementen, is de vroegst bekende systematische bespreking van de meetkunde. De Elementen is een van de meest invloedrijke boeken uit de geschiedenis, niet alleen om de wiskundige inhoud, maar vooral vanwege de gehanteerde methode. Deze methode bestaat eruit om uitgaande van een kleine verzameling van intuïtief aansprekende axioma's, vervolgens vele andere proposities, lemma's en stellingen te bewijzen. Hoewel veel van Euclides' resultaten reeds eerder door vroegere Griekse wiskundigen waren geformuleerd, was Euclides de eerste die liet zien hoe deze proposities in elkaar grijpen in een alomvattend deductief en logisch systeem.
De euclidische meetkunde is de meetkunde van ruimte die niet gekromd is. Eerste voorbeeld van een ruimte die wel gekromd is, is het oppervlak van een bol. Belangrijke begrippen in de euclidische meetkunde zijn onder andere de punt, lijn, lijnstuk, kant van de lijn, cirkel met straal en middelpunt, rechte hoek en congruentie. Deze begrippen kennen we, het zijn de begrippen waar het onderwijs in de wiskunde mee begint. We hebben ook een intuïtief beeld van de euclidische meetkunde, maar voor een exacte beschrijving ervan zijn de vijf postulaten van Euclides nodig.
Als eerste axiomatisch systeem begint de Elementen met de meetkunde op een vlak en gebruikt daarbij bovengenoemde begrippen. Hier vindt men ook de eerste voorbeelden van formele bewijzen. De Elementen gaat vervolgens verder met meetkunde van de drie-dimensionale ruimte, de stereometrie. Vooral in de 19e eeuw is de euclidische meetkunde uitgebreid naar elk eindig aantal dimensies. Vooral de leerboeken van de planimetrie en de stereometrie liggen ten grondslag aan de elementaire mechanica en natuurkunde.
Veel van de Elementen bestaat uit resultaten uit wat men tegenwoordig de getaltheorie noemt. Deze resultaten worden in de Elementen echter bewezen met behulp van meetkundige methoden.
Meer dan tweeduizend jaar was het bijvoeglijk naamwoord "euclidisch" overbodig, omdat de euclidische meetkunde de enige bekende vorm van meetkunde was. Euclides' axioma's, met uitzondering van de vijfde, leken zo intuïtief duidelijk dat stellingen, die op basis van deze axioma's werden bewezen door velen in absolute zin als waar beschouwd werden. Vandaag de dag zijn er echter vele andere consistente niet-euclidische meetkundes bekend. De eersten daarvan werden in het begin van de 19e eeuw ontdekt. De niet-euclidische meetkundes hebben vier van de vijf axioma's met de euclidische meetkunde gemeen. Alleen het vijfde, het axioma van de evenwijdige lijnen, volgens welk door een punt P buiten een lijn m slechts één lijn evenwijdig met m loopt, gaat in de niet-euclidische meetkundes niet op. De gewone euclidische meetkunde is te beschouwen als overgangsgeval tussen de elliptische en de hyperbolische meetkunde en wordt om die reden soms ook wel parabolische meetkunde genoemd.