De methode van Newton-Raphson, ook bekend als de methode van Newton of kortweg Newton-Raphson, is een iteratiemethode uit de numerieke wiskunde om de nulpunten te bepalen van een differentieerbare functie, zoals van een polynoom of een transcendente functie. De methode is naar Isaac Newton genoemd, die de methode bedacht, en Joseph Raphson, die er een formele beschrijving van gaf. Het algoritme convergeert onder gunstige omstandigheden vrij snel, namelijk kwadratisch: de fout na de -ste iteratie is evenredig met het kwadraat van de fout na de -de iteratie. De methode construeert in elke volgende stap een volgende benadering met behulp van de eerste afgeleide en de functiewaarde in de huidige benadering van het nulpunt. De methode is niet altijd stabiel.
De regula falsi convergeert trager dan de methode van Newton-Raphson, maar is stabieler. In de praktijk worden meer stabiele en snellere numerieke methoden dan de methode van Newton-Raphson gebruikt om de nulpunten van functies te bepalen, zoals de methode van Edmond Halley, die een uitbreiding is van de methode van Newton. De meeste methoden gebruiken tweede en hogere afgeleiden en een polynoom van een tweede of hogere graad om de nulpunten van een functie te bepalen.