Een pythagorees drietal bestaat uit drie positieve gehele getallen waarvoor geldt . De naam komt van de stelling van Pythagoras, aangezien dergelijke getallen kunnen optreden als de zijden van een rechthoekige driehoek met als lengte van de schuine zijde. De oppervlakte van een dergelijke rechthoekige driehoek is dan per definitie een congruent getal. Een pythagorees drietal wordt primitief genoemd als de grootste gemene deler van en gelijk aan 1 is.
Op kleitabletten uit de tijd van Hammurabi komen al pythagorese drietallen voor. Op het tablet Plimpton 322 bijvoorbeeld staan 15 drietallen, waaronder (56,90,106), (119,120,169) en zelfs (12709,13500,18541). Men kende ook in India zulke getallen. In de Baudhayana-Sulbasutra uit de 6e eeuw v.Chr. staan vijf drietallen. Het eenvoudigste pythagorees drietal (3,4,5) is bekend om zijn toepassing voor het bepalen van een rechte hoek. Daartoe gebruikte men een rondlopend touw met 12 knopen op gelijke afstanden.
Behalve het drietal (3,4,5) vormen ook veelvouden hiervan, zoals (6,8,10) en (9,12,15) pythagorese drietallen. Met is ook voor elk positief geheel getal een pythagorees drietal. Er zijn dus oneindig veel pythagorese drietallen, maar er zijn ook oneindig veel primitieve drietallen. In de onderstaande tabel staan de eerste drietallen. De drietallen met een grijze achtergrond zijn niet primitief.
Een heron-driehoek is een driehoek waarvan de lengten van de drie zijden rationaal zijn. Alle driehoeken met als zijden een pythagorees drietal zijn heron-driehoeken.
a | 3 | 5 | 6 | 7 | 8 | 9 | 9 | 10 | 11 | 12 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
b | 4 | 12 | 8 | 24 | 15 | 12 | 40 | 24 | 60 | 16 | 35 | 84 |
c | 5 | 13 | 10 | 25 | 17 | 15 | 41 | 26 | 61 | 20 | 37 | 85 |