Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Stelling (wiskunde)

De stelling van Pythagoras heeft ten minste 370 bekende bewijzen.

Een stelling (ook theorema, propositie of these) is in de wiskunde een bewering die op basis van axioma's en eerder bewezen beweringen is bewezen. Om een stelling te bewijzen gebruikt men in de wiskunde de regels van de logica. De afleiding van een stelling wordt vaak geïnterpreteerd als een bewijs van de waarheid van de resulterende uitdrukking, maar, afhankelijk van de betekenis van de afleidingsregels kunnen verschillende deductieve systemen verschillende interpretaties opleveren. Stellingen hebben twee componenten, die respectievelijk de hypothesen en de conclusies worden genoemd. Het bewijs van een wiskundige stelling is een logische redenering, waaruit blijkt dat de conclusies een noodzakelijke gevolgtrekking op basis van de hypothesen zijn, in de zin dat als de hypothesen waar zijn, dat dan de conclusies ook waar moeten zijn, en dit zonder verdere aannames. Het concept van een stelling is daarom fundamenteel deductief, dit in tegenstelling tot de notie van een wetenschappelijke theorie, die empirisch is. Een bewezen stelling kan weer gebruikt worden voor verdere bewijsvoering. Een stelling die speciaal voor dit doel opgesteld wordt heet een hulpstelling of lemma. Twee voorbeelden van bekende wiskundige stellingen zijn de stelling van Pythagoras en de laatste stelling van Fermat.

Hoewel stellingen in een volledig symbolische vorm kunnen worden geschreven, door bijvoorbeeld gebruik te maken van de predicatenlogica, worden stellingen ook vaak uitgedrukt in een natuurlijke taal zoals Nederlands of Engels. Hetzelfde geldt voor bewijzen, die vaak worden uitgedrukt als logisch geordende en helder geformuleerde en bewoorde informele argumenten, bedoeld om te laten zien dat een formele symbolisch bewijs kan worden geconstrueerd. Dergelijke argumenten zijn meestal gemakkelijker te controleren dan louter symbolische. Veel wiskundigen hebben een voorkeur voor een bewijs dat niet alleen de geldigheid van een stelling aantoont, maar dat ook op de een of andere manier uitlegt waarom het bewijs waar is. In sommige gevallen kan een illustratie al voldoende zijn om een stelling te bewijzen. Omdat stellingen in het hart van de wiskunde liggen, zijn zij ook centraal in de esthetica van de wiskunde. Stellingen worden vaak beschreven in termen als "triviaal", "moeilijk", "diep" of zelfs "mooi". Deze subjectieve oordelen variëren niet alleen van persoon tot persoon, maar ook door de tijd: bijvoorbeeld als een bewijs wordt vereenvoudigd of beter wordt begrepen, kan een stelling die eens als moeilijk gold voor sommigen als triviaal worden ervaren. Aan de andere kant kan een diepe stelling eenvoudig worden geformuleerd, maar kan het bewijs verrassende en subtiele verbindingen tussen uiteenlopende deelgebieden van de wiskunde blootleggen. De laatste stelling van Fermat is een bekend voorbeeld van een dergelijke stelling.


Previous Page Next Page






እርግጥ AM مبرهنة Arabic উপপাদ্য AS Teorema AST Teorem AZ Теорема BA Тэарэма BE Тэарэма BE-X-OLD Теорема Bulgarian উপপাদ্য Bengali/Bangla

Responsive image

Responsive image