Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Analiza harmoniczna

Wykres funkcji rzeczywistej oraz jej transformaty Fouriera

Analiza harmoniczna, analiza fourierowska – dział analizy matematycznej badający szeregi Fouriera i transformacje Fouriera[1], powstały w XIX wieku przy badaniu równań różniczkowych cząstkowych. Od tego czasu skorzystał z osiągnięć innych działów matematyki, w tym: (a) analiza rzeczywista wypracowała warunki Dirichleta określające warunki nakładane na funkcje, by można je było analizować za pomocą szeregów i transformat Fouriera (b) analiza funkcjonalna zmieniła perspektywę na szeregi i transformacje Fouriera. W tej perspektywie szereg i transformata Fouriera są rozkładami wektorów w bazie przestrzeni Hilberta za pomocą iloczynu skalarnego.W XX wieku m.in. opracowano algorytm szybkiej transformacji Fouriera, poszerzono zakres i metody badań dzięki teorii dystrybucji oraz znaleziono zastosowania w teorii liczb.

  1. Analiza harmoniczna, [w:] Encyklopedia PWN [online], Wydawnictwo Naukowe PWN [dostęp 2021-09-15].

Previous Page Next Page