Analiza harmoniczna, analiza fourierowska – dział analizy matematycznej badający szeregi Fouriera i transformacje Fouriera[1], powstały w XIX wieku przy badaniu równań różniczkowych cząstkowych. Od tego czasu skorzystał z osiągnięć innych działów matematyki, w tym: (a) analiza rzeczywista wypracowała warunki Dirichleta określające warunki nakładane na funkcje, by można je było analizować za pomocą szeregów i transformat Fouriera (b) analiza funkcjonalna zmieniła perspektywę na szeregi i transformacje Fouriera. W tej perspektywie szereg i transformata Fouriera są rozkładami wektorów w bazie przestrzeni Hilberta za pomocą iloczynu skalarnego.W XX wieku m.in. opracowano algorytm szybkiej transformacji Fouriera, poszerzono zakres i metody badań dzięki teorii dystrybucji oraz znaleziono zastosowania w teorii liczb[potrzebny przypis].