Grupa ilorazowa – zbiór warstw danej grupy względem jej pewnej podgrupy normalnej[1], tj. szczególny podział grupy (na niepuste podzbiory) uwzględniający jej strukturę, który sam tworzy grupę z naturalnie określonym działaniem pochodzącym od grupy wyjściowej. Z teoriomnogościowego punktu widzenia jest to zbiór ilorazowy, w którym wprowadzono zgodne z działaniem w grupie działanie na klasach relacji równoważności wyznaczającej wspomniany podział.
- W przypadku grup w zapisie addytywnym powinno mówić się formalnie o „grupach różnicowych”, zamiast bardziej adekwatnych w zapisie multiplikatywnym „grupach ilorazowych”[a], co czynili klasyczni badacze teorii grup, np. Zariski i Samuel[2], czy Jacobson[3]; współcześnie stosuje się wyłącznie nazewnictwo i notację multiplikatywną – nawet w przypadku grup w zapisie addytywnym, zob. Lang[4], czy Fuchs[5]. W artykule utrzymano współcześnie stosowaną konwencję.
- ↑ Grupa ilorazowa, [w:] Encyklopedia PWN [online], Wydawnictwo Naukowe PWN [dostęp 2021-07-28] .
- ↑ Oscar Zariski, Pierre Samuel: Commutative Algebra. Wyd. 1. T. I. Nowy Jork: Springer-Verlag, 1975, seria: Graduate Texts in Mathematics. 28. ISBN 978-0-387-90089-6. ISSN 0072-5285. (ang.). Brak numerów stron w książce
- ↑ Nathan Jacobson: Lectures in Abstract Algebra. Wyd. 1. T. I. Nowy Jork: Springer-Verlag, 1951, seria: Graduate Texts in Mathematics. 30. ISBN 978-1-4684-7303-2. ISSN 0072-5285. (ang.). Brak numerów stron w książce
- ↑ Serge Lang: Algebra. Wyd. 3. Nowy Jork: Springer-Verlag, 2002, seria: Graduate Texts in Mathematics. DOI: 10.1007/978-1-4613-0041-0. 211. ISBN 978-0-387-95385-4. ISSN 0072-5285. (ang.). Brak numerów stron w książce
- ↑ László Fuchs: Infinite abelian groups. T. I. Nowy Jork: Academic Press, 1970, seria: Pure and Applied Mathematics. 36. (ang.). Brak numerów stron w książce
Błąd w przypisach: Istnieje znacznik <ref>
dla grupy o nazwie „uwaga”, ale nie odnaleziono odpowiedniego znacznika <references group="uwaga"/>
BŁĄD PRZYPISÓW