Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Matematyka dyskretna

Problem mostów królewieckich to umowny początek teorii grafów.

Matematyka dyskretna – zbiorcza nazwa wszystkich działów matematyki, które zajmują się badaniem struktur nieciągłych, to znaczy zawierających zbiory co najwyżej przeliczalne[1], czyli właśnie dyskretne. Podstawowe dziedziny matematyki dyskretnej to kombinatoryka i teoria grafów[1]. Niektóre z pozostałych to:

Matematyka dyskretna bywa kontrastowana z matematyką „ciągłą” jak rachunek różniczkowy i całkowy[2]. Termin ten pojawił się najpóźniej na początku XX wieku, choć samo pojęcie wielkości dyskretnej występowało już w wieku XVI. Najpóźniej w latach 70. XX wieku pojawiły się osobne czasopisma naukowe poświęcone tej dyscyplinie[3].

  1. a b matematyka dyskretna, [w:] Encyklopedia PWN [online], Wydawnictwo Naukowe PWN [dostęp 2022-02-15].
  2. a b c Eric W. Weisstein, Discrete Mathematics, [w:] MathWorld, Wolfram Research (ang.). [dostęp 2022-02-15].
  3. publikacja w otwartym dostępie – możesz ją przeczytać Jeff Miller, discrete mathematics [w:] Earliest Known Uses of Some of the Words of Mathematics (D), MacTutor History of Mathematics archive, mathshistory.st-andrews.ac.uk [dostęp 2022-02-18].

Previous Page Next Page