Proces Wienera (ruch Browna) – proces stochastyczny z czasem ciągłym nazwany dla uhonorowania osiągnięć Norberta Wienera. Jest też często nazywany ruchem Browna, gdyż jest modelem matematycznym procesu fizycznego o tej nazwie, który po raz pierwszy zaobserwował botanik Robert Brown. Proces Wienera jest najbardziej znanym przykładem procesu gaussowskiego, a ponadto jest szczególnym przypadkiem ogólniejszego procesu Lévy’ego. Proces Wienera nierzadko opisuje zjawiska występujące w ekonomii, finansach czy fizyce.
W matematyce, badania nad procesem Wienera zapoczątkowały rozwój teorii martyngałów z czasem ciągłym. Proces odgrywa kluczową rolę w badaniach bardziej skomplikowanych procesów, np. procesów będących rozwiązaniami stochastycznych równań różniczkowych jak procesy dyfuzji. W matematyce stosowanej procesu Wienera używa się m.in. do wyznaczenia całki stochastycznej z tzw. białego szumu oraz do modelowania innych szumów (zob. szum czerwony).
W fizyce proces Wienera służy do modelowania ruchów cząsteczek w zawiesistej cieczy oraz różnych procesów dyfuzyjnych (zob. równanie Fokkera-Plancka oraz równanie Langevina). Rozwiązanie równania Schrödingera wyraża się poprzez proces Wienera (zob. wzór Feynmana-Kaca). W finansach, procesu Wienera używa się do wyznaczenia modelu Blacka-Scholesa wyceny opcji europejskich.