Quasi-grupa – grupoid z jednoznacznością rozwiązań równań liniowych (lewo- i prawostronnych)[1]. W przypadku skończonego nośnika oznacza to, że tablica Cayleya działania grupoidu jest kwadratem łacińskim. Równoważnie można żądać, by grupoid miał własność skracania (lewo- i prawostronną)[2].
Interpretując działanie dwuargumentowe jako mnożenie grupoid można uważać za (niekoniecznie łączną) strukturę algebraiczną z mnożeniem i dzieleniem (lewo- i prawostronnym).
Quasi-grupa z elementem neutralnym to lupa[3] lub pętla[potrzebny przypis].