Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


SnRNA

snRNA, mały jądrowy RNA (ang. small nuclear RNA) – występujący w jądrze komórkowym niekodujący RNA pełniący funkcję rybozymu w procesie wycinania intronów (splicingu).

Małe jądrowe RNA można podzielić na dwie klasy, Sm i Lsm. snRNA klasy Sm są transkrybowane przez polimerazę RNA II i mają na końcu 5' 7-metyloguanozynową (7mG) czapeczkę, sekwencję wiążącą białka Sm oraz strukturę typu łodyżka i pętla (ang. stem-loop) na końcu 3'. Do tej klasy należy większość znanych snRNA. snRNA klasy Lsm są transkrybowane przez polimerazę RNA III i zawierają 5'-monometylofosforanową (MPG) czapeczkę oraz ciąg urydyn na końcu 3', do którego wiążą się białka Lsm. Jak dotąd jedyne poznane snRNA należące do klasy Lsm to U6 i U6atac[1].

Cząsteczki małego jądrowego RNA (ze względu na wysoką zawartość nukleotydów urydynowych nazywane też UsnRNA) pełnią ważną funkcję w splicingu - procesie wycinania intronów z prekursorów mRNA (pre-mRNA). SnRNA wykazują biologiczną aktywność w kompleksach z białkami. Kompleksy ośmiu białek Sm lub typu Sm (ang. Sm-like, Lsm) i jednej z cząsteczek snRNA tworzą tzw. małe jądrowe rybonukleoproteiny (ang. small nuclear ribonucleoproteins, snRNP). Wszystkie snRNA biorą udział w splicingu, z wyjątkiem U7 snRNA, które jest zaangażowane w obróbkę końca 3' pre-mRNA histonów. SnRNP stanowią ważny składnik spliceosomu - kompleksu białkowo-rybonukleinowego zaangażowanego w wycinanie intronów. Ich rola polega na rozpoznawaniu odpowiednich obszarów intronu poprzez tworzenie komplementarnych połączeń RNA-RNA z dwoma obszarami terminalnymi i miejscem rozgałęzienia intronu. Dodatkowo snRNA nadają przestrzenny kształt dwóm centrom aktywnym spliceosomu i prawdopodobnie katalizują dwie następujące po sobie reakcje transestryfikacji zachodzące w trakcie wycinania intronu[2][3].

Funkcjonalnie snRNA dzieli się na dwie grupy. Do pierwszej zalicza się wchodzące w skład klasycznego spliceosomu cząsteczki U1, U2, U4, U5 oraz U6 snRNA uczestniczące w wycinaniu przeważającej większości intronów pre-mRNA nazywanych GU-AG (ze względu na obecność charakterystycznych par nukleotydów na końcach 3’ i 5’) lub intronami typu U2. Do drugiej grupy należą U11, U12, U4atac, U6atac snRNA, które razem z U5 biorą udział w wycinaniu intronów typu U12 (AU-AC), tworząc tzw. alternatywny spliceosom[4].

  1. A. Gregory Matera, Rebecca M. Terns, Michael P. Terns, Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs, „Nature Reviews. Molecular Cell Biology”, 8 (3), 2007, s. 209–220, DOI10.1038/nrm2124, PMID17318225 [dostęp 2024-03-27].
  2. C.L. Will, R. Lührmann, Spliceosomal UsnRNP biogenesis, structure and function, „Current Opinion in Cell Biology”, 13 (3), 2001, s. 290–301, DOI10.1016/s0955-0674(00)00211-8, PMID11343899 [dostęp 2024-03-27].
  3. B. Lewin (2004), Genes VIII
  4. W.Y. Tarn, J.A. Steitz, Pre-mRNA splicing: the discovery of a new spliceosome doubles the challenge, „Trends in Biochemical Sciences”, 22 (4), 1997, s. 132–137, DOI10.1016/s0968-0004(97)01018-9, PMID9149533 [dostęp 2024-03-27].

Previous Page Next Page