Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Twierdzenie Stokesa

George Gabriel Stokes (1819–1903)

Twierdzenie Stokesa – twierdzenie mówiące, że cyrkulacja pola wektorowego po zamkniętym i zorientowanym konturze gładkim jest równa strumieniowi rotacji pola przez dowolną powierzchnię ograniczoną tym konturem. Twierdzenie to odgrywa ważną rolę w teorii pól. Używane jest w mechanice płynów, równaniach Maxwella i wielu innych. Twierdzenia Greena i Ostrogradskiego-Gaussa można traktować jako szczególne przypadki twierdzenia Stokesa[1].

Twierdzenie Stoksa ma źródła w pracach Ampère'a z 1826 roku. W jego standardowej postaci została opracowana przez Williama Thomsona jeszcze przed 1850 rokiem i przekazana G. G. Stokesowi, który opublikował je jako problem w egzaminach nagrody Smitha(inne języki) w 1854 roku. Nie jest wiadome, czy ktoś rozwiązał problem, ale jednym z uczestników był Maxwell, to właśnie on uzyskał informacje, że Stokes otrzymał twierdzenie od Thomsona. Pierwszy dowód twierdzenia został opublikowany przez Hermanna Hankela(inne języki) w 1861[1].

  1. a b Hans Niels Jahnke: A history of analysis. Providence, RI: American Mathematical Society, 2003, s. 207-208. ISBN 0-8218-2623-9. OCLC 51607350.

Previous Page Next Page