Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Curvatura

Uma migração da célula Dictyostelium discoideum do tipo selvagem, cujo limite é colorido por curvatura. Barra de escala: 5 µm; Duração: 22 segundos.

Em matemática, uma curvatura é qualquer um de uma série de conceitos vagamente relacionadas em diferentes áreas da geometria. Intuitivamente, curvatura é a quantidade na qual um objeto geométrico se desvia do plano, ou reto no caso de uma linha, mas esta é definida de diferentes formas, dependendo do contexto. Há uma diferença fundamental entre a curvatura extrínseca, que é definida para objetos incorporados em outro espaço (geralmente um espaço euclidiano) de um modo que se relaciona com o raio de curvatura de círculos que tocam o objeto, e curvatura intrínseca, que é definida em cada ponto de uma variedade de Riemann. Este artigo lida principalmente com o primeiro conceito.

O exemplo clássico de curvatura extrínseca é a de um círculo, que em todos os lugares tem curvatura igual ao inverso do seu raio. Círculos menores dobram-se mais acentuadamente, e, portanto, têm maior curvatura. A curvatura de uma curva suave é definida como a curvatura do seu círculo osculador em cada ponto.

Mais vulgarmente isto é uma quantidade escalar, mas pode-se também definir um vetor de curvatura que leva em conta a direção da dobra, bem como a sua nitidez. A curvatura de objetos mais complexos (tais como superfícies ou até mesmo curvas n-dimensionais de espaços) é descrita por mais objetos complexos de álgebra linear, tais como o tensor de curvatura geral de Riemann.


Previous Page Next Page






ጉብጠት AM انحناء (رياضيات) Arabic Curvatura Catalan Křivost křivky Czech Кукăрлăх CV Krümmung German Καμπυλότητα Greek Curvature English Kurbeco (kurbo) EO Curvatura Spanish

Responsive image

Responsive image