Os respectivos diagramas consistem de curvas fechadas simples desenhadas sobre um plano, de forma a simbolizar os conjuntos e permitir a representação das relações de pertença entre conjuntos e seus elementos (por exemplo, 4 ∈ {3,4,5}, mas 4 ∉ {1,2,3,12})[1][2] e relações de continência (inclusão) entre os conjuntos (por exemplo, {1, 3} ⊂ {1, 2, 3, 4}).[3][4] Assim, duas curvas que não se tocam e estão uma no espaço interno da outra simbolizam conjuntos que possuem continência; ao passo que o ponto interno a uma curva representa um elemento pertencente ao conjunto.[5][6]
Do mesmo modo, espaços internos comuns a dois ou mais conjuntos representam a sua interseção, ao passo que a totalidade dos espaços pertencentes a um ou outro conjunto indistintamente representa sua união.
Embora seja simples construir diagramas de Venn para dois ou três conjuntos, surgem dificuldades quando se tenta usá-los para um número maior.[10] Algumas construções possíveis são devidas ao próprio John Venn e a outros matemáticos como Anthony W. F. Edwards, Branko Grünbaum e Phillip Smith. Além disso, encontram-se em uso outros diagramas similares aos de Venn, entre os quais os de Euler, Johnston, Pierce e Karnaugh.[11]
↑Ruskey & Weston, Frank & Mark (junho de 2005). «What is a Venn Diagram?». The Electronic Journal of Combinatorics (DS 5). Consultado em 19 de janeiro de 2012. Arquivado do original em 1 de maio de 2006
↑Pinto, Neuza Bertoni (2006). «Práticas Escolares do Movimento da Matemática Moderna»(PDF). Anais do VI Congresso Luso-Brasileiro de História da Educação. Consultado em 16 de Janeiro de 2012. Arquivado do original(PDF) em 4 de março de 2011"[Papy] Apresentou o diagrama de Venn como representação gráfica de excelência para o estudo das propriedades matemáticas. Aprofundando as críticas ao ensino tradicional de geometria, Papy exaltou a linguagem dos gráficos, aliando a visão intuitiva à estrutura lógica, enfatizou a importância das representações gráficas para a esquematização do pensamento".