Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Ilha de calor

Exemplo de vida urbana densa sem espaços verdes que leva a um efeito pronunciado de ilha de calor urbana (Milão, Itália)
Exemplo de um espaço verde no centro da cidade que pode reduzir o efeito de ilha de calor urbana (Central Park, Nova York)

Áreas urbanas geralmente sofrem o efeito da ilha de calor (IC), ou seja, são significativamente mais quentes do que as áreas rurais vizinhas. A diferença de temperatura é geralmente maior à noite do que durante o dia,[1] e é mais aparente quando os ventos são fracos, em condições de bloqueio, notavelmente durante o verão e o inverno. A principal causa do efeito IC é a modificação das superfícies terrestres, enquanto o calor residual gerado pelo uso de energia é um contribuinte secundário.[2][3][4] As áreas urbanas ocupam cerca de 0,5% da superfície terrestre da Terra, mas abrigam mais da metade da população mundial.[5] À medida que um centro populacional cresce, ele tende a expandir sua área e aumentar sua temperatura média. O termo ilha de calor também é usado; o termo pode ser usado para se referir a qualquer área que seja relativamente mais quente do que a área circundante, mas geralmente se refere a áreas perturbadas pelo homem.[6]

A precipitação mensal é maior a favor do vento nas cidades, em parte devido à IC. O aumento do calor nos centros urbanos aumenta a duração das estações de cultivo e diminui a ocorrência de tornados fracos. A IC diminui a qualidade do ar ao aumentar a produção de poluentes como o ozônio, e diminui a qualidade da água à medida que águas mais quentes fluem para os riachos da área e colocam pressão em seus ecossistemas.

Nem todas as cidades têm uma ilha de calor urbana distinta, e as suas características dependem fortemente do clima de fundo da área em que a cidade está localizada.[7] O impacto em uma cidade pode mudar muito com base no ambiente local. O calor pode ser reduzido pela cobertura de árvores e espaços verdes que atuam como fontes de sombra e promovem o resfriamento evaporativo.[8] Outras opções incluem telhados verdes, aplicações passivas de resfriamento radiativo diurno e o uso de superfícies de cores mais claras e materiais de construção menos absorventes. Elas refletem mais luz solar e absorvem menos calor.[9][10][11]

As alterações climáticas não são a causa das ilhas de calor urbanas, mas estão a causar ondas de calor mais frequentes e intensas, que por sua vez amplificam o efeito de ilha de calor urbana nas cidades.[12]:993 O desenvolvimento urbano compacto e denso pode aumentar o efeito de ilha de calor urbana, levando a temperaturas mais elevadas e a uma maior exposição.[13]

  1. Phelan, Patrick E.; Kaloush, Kamil; Miner, Mark; Golden, Jay; Phelan, Bernadette; Silva, Humberto; Taylor, Robert A. (4 de novembro de 2015). «Urban Heat Island: Mechanisms, Implications, and Possible Remedies». Annual Review of Environment and Resources. 40 (1): 285–307. doi:10.1146/annurev-environ-102014-021155Acessível livremente 
  2. Solecki, William D.; Rosenzweig, Cynthia; Parshall, Lily; Pope, Greg; Clark, Maria; Cox, Jennifer; Wiencke, Mary (2005). «Mitigation of the heat island effect in urban New Jersey». Global Environmental Change Part B: Environmental Hazards. 6 (1): 39–49. doi:10.1016/j.hazards.2004.12.002 
  3. United States Environmental Protection Agency (2008). Reducing urban heat islands: Compendium of strategies (Relatório). pp. 7–12 
  4. Li, Y.; Zhao, X. (2012). «An empirical study of the impact of human activity on long-term temperature change in China: A perspective from energy consumption». Journal of Geophysical Research. 117 (D17): D17117. Bibcode:2012JGRD..11717117L. doi:10.1029/2012JD018132Acessível livremente 
  5. Wang, K (6 de fevereiro de 2017). «Comparing the diurnal and seasonal variabilities of atmospheric, and surface urban heat islands based on the Beijing Urban Meteorological Network». Journal of Geophysical Research: Atmospheres. 122 (4): 2131–2154. Bibcode:2017JGRD..122.2131W. doi:10.1002/2016JD025304Acessível livremente 
  6. Glossary of Meteorology (2019). «Urban Heat Island». American Meteorological Society. Consultado em 12 de abril de 2019 
  7. T. Chakraborty and X. Lee (2019). «A simplified urban-extent algorithm to characterize surface urban heat islands on a global scale and examine vegetation control on their spatiotemporal variability». International Journal of Applied Earth Observation and Geoinformation. 74: 269–280. Bibcode:2019IJAEO..74..269C. doi:10.1016/j.jag.2018.09.015 
  8. Waldrop, M. Mitchell (19 de outubro de 2022). «What can cities do to survive extreme heat?». Knowable Magazine. doi:10.1146/knowable-101922-2Acessível livremente. Consultado em 9 de outubro de 2024 
  9. «Nature of Cities». Regeneration.org. Consultado em 16 de outubro de 2021 
  10. Younes, Jaafar; Ghali, Kamel; Ghaddar, Nesreen (Agosto de 2022). «Diurnal Selective Radiative Cooling Impact in Mitigating Urban Heat Island Effect». Sustainable Cities and Society. 83: 103932. Bibcode:2022SusCS..8303932Y. doi:10.1016/j.scs.2022.103932 
  11. Khan, Ansar; Carlosena, Laura; Feng, Jie; Khorat, Samiran; Khatun, Rupali; Doan, Quang-Van; Santamouris, Mattheos (19 de janeiro de 2022). «Optically Modulated Passive Broadband Daytime Radiative Cooling Materials Can Cool Cities in Summer and Heat Cities in Winter». Sustainability. 14 (3). 1110 páginas. doi:10.3390/su14031110Acessível livremente 
  12. «Cities, Settlements and Key Infrastructure». Climate Change 2022 – Impacts, Adaptation and Vulnerability. [S.l.: s.n.] 2023. pp. 907–1040. ISBN 978-1-009-32584-4. doi:10.1017/9781009325844.008 
  13. Sharifi, Ayyoob (2020). «Trade-offs and conflicts between urban climate change mitigation and adaptation measures: A literature review». Journal of Cleaner Production. 276: 122813. Bibcode:2020JCPro.27622813S. doi:10.1016/j.jclepro.2020.122813 

Previous Page Next Page