Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Primitiva

Em matemática, se é um conjunto de números reais e é uma função de em , diz-se que uma função de em é uma primitiva ou antiderivada de se a derivada de for igual a . Se f tiver uma primitiva, diz-se que é primitivável. Pode-se provar que, se for um intervalo com mais do que um ponto:[1][2]

  • quaisquer duas primitivas diferem por uma constante, ou seja, se F1 e F2 forem primitivas de , então F1 − F2 é constante;
  • se for contínua então f é primitivável, o que resulta do teorema fundamental do cálculo.

Quando se primitiva uma função num intervalo (aberto, fechado ou semiaberto) obtém-se uma família de primitivas na forma:[3]

  1. Stewart, James (2008). Calculus: Early Transcendentals 6th ed. [S.l.]: Brooks/Cole. ISBN 0-495-01166-5  Verifique o valor de |url-access=registration (ajuda)
  2. Larson, Ron; Edwards, Bruce H. (2009). Calculus 9th ed. [S.l.]: Brooks/Cole. ISBN 0-547-16702-4 
  3. STEWART, james. Cálculo. 7. ed. São Paulo: Cengage Learning, 2013. Tradução de: EZ2 Translate.

Previous Page Next Page