![]() | Foram assinalados vários problemas nesta página ou se(c)ção: |
A supercondutividade é uma propriedade física de característica intrínseca de certos materiais que, quando resfriados a temperaturas extremamente baixas, tendem a conduzir corrente elétrica sem resistência significativa, gerando campos magnéticos que emanam do metal. Um composto de hidrogênio, magnésio e lítio, por exemplo, pode conduzir eletricidade sem resistência a temperaturas de até 200 graus Celsius, se for comprimido a uma pressão extremamente alta, quase 2,5 milhões de vezes a pressão atmosférica terrestre[1]
Essa propriedade foi descoberta em abril de 1911 pelo físico holandês Heike Kamerlingh Onnes em seu laboratório em Leiden, graças ao seu trabalho inovador na fabricação de hélio líquido, que possibilitou alcançar temperaturas muito baixas, na ordem de 1 K (-272,15°C ou -457,9°F). A supercondutividade foi notada pela primeira vez quando Onnes observava o comportamento do mercúrio quando resfriado a 4 K (-269,15 °C ou -452,47 °F).
Assim como o ferromagnetismo e as linhas espectrais atômicas, a supercondutividade pode ser entendida como um fenômeno quântico microscópico, ou seja, este estado pode ser descrito por uma única função de onda. Caracteriza-se também por um fenômeno chamado de efeito Meissner-Ochsenfeld, que é a ejeção de um campo magnético suficientemente forte do interior do material que impede que campos externos penetrem no supercondutor, às vezes confundido como um tipo de diamagnetismo perfeito, assim como as transições no estado supercondutor. A ocorrência do efeito Meissner indica que a supercondutividade não pode ser entendida simplesmente como a idealização de um condutor perfeito, como na física clássica.
Para vários metais, a resistência elétrica aumenta quase que linearmente com a temperatura, mas há sempre uma região não linear em temperaturas muito baixas. Essa fuga da linearidade que é apresentada em temperaturas baixas acontece pela ocorrência de impurezas e irregularidades nesse metal (mesmo próximo ao zero absoluto ainda existe alguma resistência elétrica). Mas num supercondutor a resistência cai abruptamente a zero quando o material é resfriado abaixo de sua temperatura crítica. A corrente elétrica flui em um circuito de fios supercondutores podendo persistir indefinidamente sem qualquer fonte de energia.
Um dos fatores limitantes para aplicação e pesquisa dos supercondutores no passado foi a necessidade de atingir baixíssimas temperaturas, o que inviabilizou o seu uso em larga escala. Mas, em 1986, foram descobertos alguns materiais cerâmicos chamados de cuprates com estrutura de perovskitas que exibiam temperaturas críticas próximas de 90 K (-183,15 °C), que é uma temperatura relativamente alta a se atingir, sendo denominado então como um supercondutor de alta temperatura (já que supercondutores convencionais teoricamente não a alcançariam). Os supercondutores de alta temperatura renovaram o interesse no estudo e na possível comercialização em larga escala, viabilizando novas perspectivas de melhoria nos materiais existentes e na evolução da engenharia sob a criação de novos materiais supercondutores próximos à temperatura ambiente.
Os supercondutores são empregados na produção de super ímãs, os quais são implantados em unidades de ressonância magnética, produzindo imagens de órgãos em alta qualidade sem a necessidade de expor pessoas a radiação nociva. Por apresentarem resistência nula, que são de grande interesse para aparelhos elétricos, onde não ocorre a perda de energia por conta do efeito Joule, contudo um grande impedimento é que este material tem que ser mantido a baixas temperaturas. Sendo assim, caso algum dia ocorra a descoberta de um supercondutor a temperatura ambiente, seu impacto na tecnologia será enorme.