Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Cheletropic reaction

Figure 1. Pericyclic Reactions

A cheletropic reaction is a type of pericyclic reaction where one atom on one of the reagents gets two new bonds. A pericyclic reaction is one that involves a transition state with a cyclic array of atoms and an associated cyclic array of interacting orbitals. A reorganization of σ and π bonds occurs in this cyclic array.[1]

Cheletropic reactions are a subclass of cycloadditions. What sets cheletropic reactions apart is that on one of the reagents, both new bonds are being made to the same atom.[2] A few examples are shown to the right in Figure 1. In the first case, the single atom is the carbon atom in the carbonyl group. That carbon atom ends up in carbon monoxide. The end result is making two new bonds to one atom. The first two examples are known as "cheletropic extrusions" because a small stable molecule is given off in the reaction. The driving force for these reactions is often the entropic benefit of releasing a gas (e.g. CO or N2).[1]

  1. 1.0 1.1 Eric V. Anslyn and Dennis A. Dougherty Modern Physical Organic Chemistry University Science Books, 2006.
  2. Ian Fleming. Frontier Orbitals and Organic Chemistry Reactions. Wiley, 1976.

Previous Page Next Page