Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Copernicium

Copernicium, 00Cn
Copernicium
Pronunciation/ˌkpərˈnɪsiəm/ (KOH-pər-NISS-ee-əm)
Mass number[285]
Copernicium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Hg

Cn

(Uhh)
roentgeniumcoperniciumnihonium
Groupgroup 12
Periodperiod 7
Block  d-block
Electron configuration[Rn] 5f14 6d10 7s2 (predicted)[1] (predicted)
Electrons per shell2, 8, 18, 32, 32, 18, 2 (predicted)
Physical properties
Phase at STPgas (predicted)
Boiling point357+112
−108
 K ​(84+112
−108
 °C, ​183+202
−194
 °F)[2]
Density when liquid (at m.p.)23.7 g/cm3 (predicted)[1]
Atomic properties
Oxidation states0, (+1), +2, (+4), (+6) (parenthesized: prediction)[1][3][4][5]
Ionization energies
  • 1st: 1155 kJ/mol
  • 2nd: 2170 kJ/mol
  • 3rd: 3160 kJ/mol
  • (more) (all estimated)[1]
Atomic radiuscalculated: 147 pm[1][6] (predicted)
Covalent radius122 pm (predicted)[7]
Other properties
Natural occurrencesynthetic
Crystal structurebody-centered cubic (bcc)
Body-centered cubic crystal structure for copernicium

(predicted)[8]
CAS Number54084-26-3
History
Namingafter Nicolaus Copernicus
DiscoveryGesellschaft für Schwerionenforschung (1996)
Isotopes of copernicium
Main isotopes[9] Decay
abun­dance half-life (t1/2) mode pro­duct
283Cn synth 3.81 s[10] α96% 279Ds
SF4%
ε? 283Rg
Preview warning: Infobox Cn isotopes: Decay mode not recognised, input shown unedited "dm3=ε?" cat#D
285Cn synth 30 s α 281Ds
286Cn synth 8.4 s? SF
 Category: Copernicium
| references
Preview warning: unknown parameter "electron configuration"
Preview warning: unknown parameter "isotopes"
Preview warning: unknown parameter "category comment"
Preview warning: unknown parameter "block"
Preview warning: unknown parameter "phase ref"
Preview warning: unknown parameter "group"
Preview warning: unknown parameter "electron configuration re..."
Preview warning: unknown parameter "category"
Preview warning: unknown parameter "period"

Copernicium (formerly Ununbium) is a chemical element in the Periodic Table. It is also named eka-mercury. It has the symbol Cn. It has the atomic number 112. It is a transuranium element.

Nicolaus Copernicus

The element is named in honor of Nicolaus Copernicus.

Using periodic trends, people think that it will be a liquid metal like mercury. It is likely to be more volatile than mercury however.

  1. 1.0 1.1 1.2 1.3 1.4 1.5 Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 978-1-4020-3555-5.
  2. Eichler, R.; Aksenov, N. V.; Belozerov, A. V.; Bozhikov, G. A.; Chepigin, V. I.; Dmitriev, S. N.; Dressler, R.; Gäggeler, H. W.; et al. (2008). "Thermochemical and physical properties of element 112". Angewandte Chemie. 47 (17): 3262–6. doi:10.1002/anie.200705019. Retrieved 5 November 2013.
  3. Gäggeler, Heinz W.; Türler, Andreas (2013). "Gas Phase Chemistry of Superheavy Elements". The Chemistry of Superheavy Elements. Springer Science+Business Media. pp. 415–483. doi:10.1007/978-3-642-37466-1_8. ISBN 978-3-642-37465-4. Retrieved 2018-04-21.
  4. Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties". Recent Impact of Physics on Inorganic Chemistry. Structure and Bonding. 21: 89–144. doi:10.1007/BFb0116498. ISBN 978-3-540-07109-9. Retrieved 4 October 2013.
  5. Hu, Shu-Xian; Zou, Wenli (23 September 2021). "Stable copernicium hexafluoride (CnF6) with an oxidation state of VI+". Physical Chemistry Chemical Physics. 2022 (24): 321–325. doi:10.1039/D1CP04360A. PMID 34889909.
  6. Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties". Recent Impact of Physics on Inorganic Chemistry. 21: 89–144. doi:10.1007/BFb0116498. Retrieved 4 October 2013.
  7. Chemical Data. Copernicium - Cn, Royal Chemical Society
  8. Gyanchandani, Jyoti; Mishra, Vinayak; Dey, G. K.; Sikka, S. K. (January 2018). "Super heavy element Copernicium: Cohesive and electronic properties revisited". Solid State Communications. 269: 16–22. doi:10.1016/j.ssc.2017.10.009. Retrieved 28 March 2018.
  9. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  10. Oganessian, Yu. Ts.; Utyonkov, V. K.; Ibadullayev, D.; et al. (2022). "Investigation of 48Ca-induced reactions with 242Pu and 238U targets at the JINR Superheavy Element Factory". Physical Review C. 106 (24612). Bibcode:2022PhRvC.106b4612O. doi:10.1103/PhysRevC.106.024612. S2CID 251759318.
  11. Soverna S 2004, 'Indication for a gaseous element 112,' in U Grundinger (ed.), GSI Scientific Report 2003, GSI Report 2004-1, p. 187, ISSN 0174-0814
  12. Utyonkov, V. K.; Brewer, N. T.; Oganessian, Yu. Ts.; Rykaczewski, K. P.; Abdullin, F. Sh.; Dimitriev, S. N.; Grzywacz, R. K.; Itkis, M. G.; Miernik, K.; Polyakov, A. N.; Roberto, J. B.; Sagaidak, R. N.; Shirokovsky, I. V.; Shumeiko, M. V.; Tsyganov, Yu. S.; Voinov, A. A.; Subbotin, V. G.; Sukhov, A. M.; Karpov, A. V.; Popeko, A. G.; Sabel'nikov, A. V.; Svirikhin, A. I.; Vostokin, G. K.; Hamilton, J. H.; Kovrinzhykh, N. D.; Schlattauer, L.; Stoyer, M. A.; Gan, Z.; Huang, W. X.; Ma, L. (30 January 2018). "Neutron-deficient superheavy nuclei obtained in the 240Pu+48Ca reaction". Physical Review C. 97 (14320): 1–10. Bibcode:2018PhRvC..97a4320U. doi:10.1103/PhysRevC.97.014320.
  13. Chart of Nuclides. Brookhaven National Laboratory

Previous Page Next Page






Kopernikium AF ኮፐርኒኪየም AM Copernicio AN कोपरनिसियम ANP كوبرنيسيوم Arabic كوبرنيسيوم ARZ Coperniciu AST Kopernisium AZ Коперниций BA Kopernikium BAN

Responsive image

Responsive image