Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Poisson distribution

Typical Poisson distribution

In probability and statistics, Poisson distribution is a probability distribution. It is named after Siméon Denis Poisson. It measures the probability that a certain number of events occur within a certain period of time. The events need to be unrelated to each other. They also need to occur with a known average rate, represented by the symbol (lambda).[1]

More specifically, if a random variable follows Poisson distribution with rate , then the probability of the different values of can be described as follows:[2][3]

for

Examples of Poisson distribution include:

  • The numbers of cars that pass on a certain road in a certain time
  • The number of telephone calls a call center receives per minute
  • The number of light bulbs that burn out (fail) in a certain amount of time
  • The number of mutations in a given stretch of DNA after a certain amount of radiation
  • The number of errors that occur in a system
  • The number of Property & Casualty insurance claims experienced in a given period of time
  1. "List of Probability and Statistics Symbols". Math Vault. 2020-04-26. Retrieved 2020-10-06.
  2. "1.3.6.6.19. Poisson Distribution". www.itl.nist.gov. Retrieved 2020-10-06.
  3. Weisstein, Eric W. "Poisson Distribution". mathworld.wolfram.com. Retrieved 2020-10-06.

Previous Page Next Page