Matematiska operationer | ||
---|---|---|
Addition (+) | ||
term + term addend + addend |
= | summa |
Subtraktion (−) | ||
term − term minuend − subtrahend |
= | differens |
Multiplikation (× eller ·) | ||
faktor × faktor multiplikator × multiplikand |
= | produkt |
Division (÷ eller /) | ||
täljare / nämnare dividend / divisor |
= | kvot |
Moduloräkning (mod) | ||
dividend mod divisor | = | rest |
Exponentiering (^) | ||
basexponent | = | potens |
n:te roten (√) | ||
grad √radikand | = | rot |
Logaritm (log) | ||
logbas(potens) | = | exponent |
Addition är ett av de fyra grundläggande räknesätten inom aritmetiken. Addition betecknas oftast med plustecknet () som infördes omkring år 1500, och är en binär operator. Addition av ett negativt tal är ekvivalent med subtraktion. Vid addition läggs värdet av två (eller flera) termer samman till en summa. Att summan av sex och två är åtta skrivs och utläses "sex adderat med två är lika med åtta" eller "sex plus två är lika med åtta".
Upprepad addition betecknas med summatecken , ursprungligen den versala grekiska bokstaven Σ, sigma. Exempel:
Upprepad addition med samma term motsvarar multiplikatorn med ett heltal:
Begreppet addition och plusoperatorn används också för att beteckna andra binära operationer med liknande algebraiska egenskaper, exempelvis vektoraddition, matrisaddition, eller-operatorn i Boolesk algebra, modulär addition, och konkatenering av textsträngar.
Summan av två naturliga tal och kan uppfattas som antalet objekt i den uppsättning som ges av att till en uppsättning med objekt foga en uppsättning med objekt. Addition av tal lyder under en kompositionsregel; två element ställs samman och resulterar i ett element. och ställs samman och bildar exempelvis . Vid addition av talet till ett element bibehålls oförändrat, . Noll förändrar inte :s värde vid addition, detta gäller för varje tal .[1]