Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Area

Area
Area.svg
Arean av de tre formerna tillsammans är mellan 15 och 16 kvadrater.
Grundläggande
DefinitionUtsträckningen av en tvådimensionell yta i planet
Storhetssymbol(er) (från latin eller engelska area), , ,
Enheter
SI-enhetKvadratmeter (m2)
SI-dimensionL2
CGS-enhetKvadratcentimeter (cm2)
CGS-dimensionL2
PlanckenhetPlanckarea
Planckdimensionħ·G·c-3
Astronomisk dimensionL2
Angloamerikansk enhetacre, sq.in., sq.ft., sq.yd., sq.mi., …
Angloamerikansk dimensionL2

Area är en storhet som beskriver utsträckningen av en tvådimensionell yta i planet. Arean hos en form kan mätas genom att jämföra den med en kvadrat av bestämd storlek. SI-enheten för area är kvadratmeter (m²). Inom matematiken är enhetskvadraten definierad till att ha arean 1. Ibland används yta som synonym till area (men jämför artikeln yta). När man talar om arean hos landområden används ibland areal.[1]

Det finns flera välkända formler som beskriver arean hos enkla geometriska former, såsom trianglar, rektanglar och cirklar. Med dessa formler kan arean av en godtycklig polygon beräknas med polygontriangulering, det vill säga att dela upp polygonen i trianglar.[2] För geometriska former med krökta ränder måste man vanligen använda matematisk analys för att beräkna arean. Faktum är att behovet att kunna bestämma arean hos plana geometriska former var en av anledningarna till att den matematiska analysen utvecklades.[3]

Ytarean hos enkla tredimensionella geometriska former såsom sfärer, koner och cylindrar kunde redan de gamla grekerna bestämma. Mer komplicerade kroppars ytarea kan beräknas med matematisk analys i flera variabler.

Area har stor betydelse inom modern matematik. Detta gäller inte bara den uppenbara betydelsen inom geometri och matematisk analys; area är besläktat med definitionen av determinanter i linjär algebra, och är en grundläggande egenskap i differentialgeometri.[4]

  1. ^ Kiselman, C.O. & Mouwitz, L. (2008). Matematiktermer för skolan. (1. uppl.) Göteborg: Nationellt centrum för matematikutbildning (NCM), Göteborgs universitet.
  2. ^ de Berg, Mark; van Kreveld, Marc; Overmars, Mark; Schwarzkopf, Otfried (2000). ”Polygon Triangulation”. Computational Geometry (2). Springer-Verlag. sid. 45–61. ISBN 3-540-65620-0 
  3. ^ Boyer, Carl B. (1959). A History of the Calculus and Its Conceptual Development. New York: Dover Publications 
  4. ^ do Carmo, Manfredo (1976). Differential Geometry of Curves and Surfaces. Prentice-Hall. sid. 98 

Previous Page Next Page






Oppervlakte AF Flächeninhalt ALS Aria AN क्षेत्रफल ANP مساحة Arabic ܫܛܝܚܘܬܐ ARC تيساع ARY مساحه ARZ ক্ষেত্ৰফল AS Área (xeometría) AST

Responsive image

Responsive image