Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.
Batlamyus teoremi
Öklid geometrisinde, Batlamyus teoremi, bir kirişler dörtgeninin (köşeleri ortak bir daire üzerinde yer alan bir dörtgen) dört kenarı ile iki köşegeni arasındaki bir ilişkiyi gösteridir. Teorem, Yunanastronom ve matematikçiBatlamyus'un (Claudius Ptolemaeus) adını almıştır.[1] Batlamyus, teoremi astronomiye uyguladığı trigonometrik bir tablo olan kirişler tablosunu oluşturmaya yardımcı olarak kullandı.
Kirişler dörtgenin köşeleri sırayla , , ve ise, teorem şunu belirtir:
Burada dikey çizgiler (| |) ile gösterim, adlandırılmış köşeler arasındaki çizgi parçalarının uzunluklarını belirtmektedir. Geometri bağlamında, yukarıdaki eşitlik genellikle basitçe şöyle yazılır:
Bu ilişki sözlü olarak şu şekilde ifade edilebilir:
Eğer bir dörtgen bir dairenin içine çizilebiliyorsa, köşegenlerinin uzunluklarının çarpımı, karşıt kenarların çiftlerinin uzunluklarının çarpımlarının toplamına eşittir.
Dahası, Batlamyus teoreminin tersi de doğrudur:
Bir dörtgende, karşıt iki kenar çiftinin uzunluklarının çarpımlarının toplamı, köşegenlerinin uzunluklarının çarpımına eşitse, bu dörtgen bir daire içerisine çizilebilir, yani bir kirişler dörtgenidir.