Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Diatomaceous earth

Diatomite rock sample from Sisquoc Formation
Scanning electron micrograph of diatomaceous earth

Diatomaceous earth (/ˌd.ətəˈmʃəs/ DY-ə-tə-MAY-shəs), also known as diatomite (/dˈætəmt/ dy-AT-ə-myte), celite, or kieselguhr, is a naturally occurring, soft, siliceous sedimentary rock that can be crumbled into a fine white to off-white powder. It has a particle size ranging from more than 3 mm to less than 1 μm, but typically 10 to 200 μm.[1] Depending on the granularity, this powder can have an abrasive feel, similar to pumice powder, and has a low density as a result of its high porosity. The typical chemical composition of oven-dried diatomaceous earth is 80–90% silica, with 2–4% alumina (attributed mostly to clay minerals), and 0.5–2% iron oxide.[2]

Diatomaceous earth consists of the fossilized remains of diatoms, a type of hard-shelled microalgae, that have accumulated over millions of years.[3] It is used as a filtration aid, mild abrasive in products including metal polishes and toothpaste, mechanical insecticide, absorbent for liquids, matting agent for coatings, reinforcing filler in plastics and rubber, anti-block in plastic films, porous support for chemical catalysts, cat litter, activator in coagulation studies, a stabilizing component of dynamite, a thermal insulator, and a soil for potted plants and trees as in the art of bonsai.[4][5] It is also used in gas chromatography packed columns made with glass or metal as stationary phase.

  1. ^ Dobrosielska, Marta; Dobrucka, Renata; Brząkalski, Dariusz; Frydrych, Miłosz; Kozera, Paulina; Wieczorek, Monika; Jałbrzykowski, Marek; Kurzydłowski, Krzysztof J.; Przekop, Robert E. (May 18, 2022). "Influence of Diatomaceous Earth Particle Size on Mechanical Properties of PLA/Diatomaceous Earth Composites". Materials. 15 (10): 3607. Bibcode:2022Mate...15.3607D. doi:10.3390/ma15103607. ISSN 1996-1944. PMC 9145730. PMID 35629631.
  2. ^ Antonides, Lloyd E. (1997). Diatomite (PDF). USGS. Retrieved December 12, 2010.
  3. ^ Rojht, Helena; Horvat, Aleksander; Athanassiou, Christos G.; Vayias, Bill J.; Tomanović, Željko; Trdan, Stanislav (2010–2012). "Impact of geochemical composition of diatomaceous earth on its insecticidal activity against adults of Sitophilus oryzae (L.) (Coleoptera: Curculionidae)". Journal of Pest Science. 83 (4): 429–436. Bibcode:2010JPesS..83..429R. doi:10.1007/s10340-010-0313-6. ISSN 1612-4758. S2CID 23110767.
  4. ^ Reka, Arianit A.; Pavlovski, Blagoj; Ademi, Egzon; Jashari, Ahmed; Boev, Blazo; Boev, Ivan; Makreski, Petre (December 31, 2019). "Effect Of Thermal Treatment Of Trepel At Temperature Range 800-1200˚C". Open Chemistry. 17 (1): 1235–1243. doi:10.1515/chem-2019-0132.
  5. ^ Reka, Arianit; Anovski, Todor; Bogoevski, Slobodan; Pavlovski, Blagoj; Boškovski, Boško (December 29, 2014). "Physical-chemical and mineralogical-petrographic examinations of diatomite from deposit near village of Rožden, Republic of Macedonia". Geologica Macedonica. 28 (2): 121–126.

Previous Page Next Page