![]() | This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: there's more than one proposed notion under this name, see last ref in further reading. (July 2014) |
In mathematics, a category is distributive if it has finite products and finite coproducts and such that for every choice of objects , the canonical map
is an isomorphism, and for all objects , the canonical map is an isomorphism (where 0 denotes the initial object). Equivalently, if for every object the endofunctor defined by preserves coproducts up to isomorphisms .[1] It follows that and aforementioned canonical maps are equal for each choice of objects.
In particular, if the functor has a right adjoint (i.e., if the category is cartesian closed), it necessarily preserves all colimits, and thus any cartesian closed category with finite coproducts (i.e., any bicartesian closed category) is distributive.