Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Fibonacci sequence

In mathematics, the Fibonacci sequence is a sequence in which each element is the sum of the two elements that precede it. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted Fn. Many writers begin the sequence with 0 and 1, although some authors start it from 1 and 1[1][2] and some (as did Fibonacci) from 1 and 2. Starting from 0 and 1, the sequence begins

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... (sequence A000045 in the OEIS)
A tiling with squares whose side lengths are successive Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13 and 21

The Fibonacci numbers were first described in Indian mathematics as early as 200 BC in work by Pingala on enumerating possible patterns of Sanskrit poetry formed from syllables of two lengths.[3][4][5] They are named after the Italian mathematician Leonardo of Pisa, also known as Fibonacci, who introduced the sequence to Western European mathematics in his 1202 book Liber Abaci.[6]

Fibonacci numbers appear unexpectedly often in mathematics, so much so that there is an entire journal dedicated to their study, the Fibonacci Quarterly. Applications of Fibonacci numbers include computer algorithms such as the Fibonacci search technique and the Fibonacci heap data structure, and graphs called Fibonacci cubes used for interconnecting parallel and distributed systems. They also appear in biological settings, such as branching in trees, the arrangement of leaves on a stem, the fruit sprouts of a pineapple, the flowering of an artichoke, and the arrangement of a pine cone's bracts, though they do not occur in all species.

Fibonacci numbers are also strongly related to the golden ratio: Binet's formula expresses the n-th Fibonacci number in terms of n and the golden ratio, and implies that the ratio of two consecutive Fibonacci numbers tends to the golden ratio as n increases. Fibonacci numbers are also closely related to Lucas numbers, which obey the same recurrence relation and with the Fibonacci numbers form a complementary pair of Lucas sequences.

  1. ^ Richard A. Brualdi, Introductory Combinatorics, Fifth edition, Pearson, 2005
  2. ^ Peter Cameron, Combinatorics: Topics, Techniques, Algorithms, Cambridge University Press, 1994
  3. ^ Cite error: The named reference GlobalScience was invoked but never defined (see the help page).
  4. ^ Cite error: The named reference HistoriaMathematica was invoked but never defined (see the help page).
  5. ^ Cite error: The named reference Donald Knuth 2006 50 was invoked but never defined (see the help page).
  6. ^ Sigler 2002, pp. 404–05.

Previous Page Next Page