Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Fourth power

In arithmetic and algebra, the fourth power of a number n is the result of multiplying four instances of n together. So:

n4 = n × n × n × n

Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares.

Some people refer to n4 as n tesseracted, hypercubed, zenzizenzic, biquadrate or supercubed instead of “to the power of 4”.

The sequence of fourth powers of integers, known as biquadrates or tesseractic numbers, is:

0, 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, 14641, 20736, 28561, 38416, 50625, 65536, 83521, 104976, 130321, 160000, 194481, 234256, 279841, 331776, 390625, 456976, 531441, 614656, 707281, 810000, ... (sequence A000583 in the OEIS).

Previous Page Next Page