Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Hinged dissection

Loop animation of hinged dissections from triangle to square, then to hexagon, then back again to triangle. Notice that the chain of pieces can be entirely connected in a ring during the rearrangement from square to hexagon.

In geometry, a hinged dissection, also known as a swing-hinged dissection or Dudeney dissection,[1] is a kind of geometric dissection in which all of the pieces are connected into a chain by "hinged" points, such that the rearrangement from one figure to another can be carried out by swinging the chain continuously, without severing any of the connections.[2] Typically, it is assumed that the pieces are allowed to overlap in the folding and unfolding process;[3] this is sometimes called the "wobbly-hinged" model of hinged dissection.[4]

  1. ^ Akiyama, Jin; Nakamura, Gisaku (2000). "Dudeney Dissection of Polygons". Discrete and Computational Geometry. Lecture Notes in Computer Science. Vol. 1763. pp. 14–29. doi:10.1007/978-3-540-46515-7_2. ISBN 978-3-540-67181-7.
  2. ^ Pitici, Mircea (September 2008). "Hinged Dissections". Math Explorers Club. Cornell University. Retrieved 19 December 2013.
  3. ^ O'Rourke, Joseph (2003). "Computational Geometry Column 44". arXiv:cs/0304025v1.
  4. ^ "Problem 47: Hinged Dissections". The Open Problems Project. Smith College. 8 December 2012. Retrieved 19 December 2013.

Previous Page Next Page






Divizare cu balamale Romanian Шарнирная равносоставленность Russian Шарнірна рівноскладеність Ukrainian

Responsive image

Responsive image