Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Integrated nested Laplace approximations

Integrated nested Laplace approximations (INLA) is a method for approximate Bayesian inference based on Laplace's method.[1] It is designed for a class of models called latent Gaussian models (LGMs), for which it can be a fast and accurate alternative for Markov chain Monte Carlo methods to compute posterior marginal distributions.[2][3][4] Due to its relative speed even with large data sets for certain problems and models, INLA has been a popular inference method in applied statistics, in particular spatial statistics, ecology, and epidemiology.[5][6][7] It is also possible to combine INLA with a finite element method solution of a stochastic partial differential equation to study e.g. spatial point processes and species distribution models.[8][9] The INLA method is implemented in the R-INLA R package.[10]

  1. ^ Rue, Håvard; Martino, Sara; Chopin, Nicolas (2009). "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations". J. R. Statist. Soc. B. 71 (2): 319–392. doi:10.1111/j.1467-9868.2008.00700.x. hdl:2066/75507. S2CID 1657669.
  2. ^ Taylor, Benjamin M.; Diggle, Peter J. (2014). "INLA or MCMC? A tutorial and comparative evaluation for spatial prediction in log-Gaussian Cox processes". Journal of Statistical Computation and Simulation. 84 (10): 2266–2284. arXiv:1202.1738. doi:10.1080/00949655.2013.788653. S2CID 88511801.
  3. ^ Teng, M.; Nathoo, F.; Johnson, T. D. (2017). "Bayesian computation for Log-Gaussian Cox processes: a comparative analysis of methods". Journal of Statistical Computation and Simulation. 87 (11): 2227–2252. doi:10.1080/00949655.2017.1326117. PMC 5708893. PMID 29200537.
  4. ^ Wang, Xiaofeng; Yue, Yu Ryan; Faraway, Julian J. (2018). Bayesian Regression Modeling with INLA. Chapman and Hall/CRC. ISBN 9781498727259.
  5. ^ Blangiardo, Marta; Cameletti, Michela (2015). Spatial and Spatio-temporal Bayesian Models with R-INLA. John Wiley & Sons, Ltd. ISBN 9781118326558.
  6. ^ Opitz, T. (2017). "Latent Gaussian modeling and INLA: A review with focus on space-time applications". Journal de la Société Française de Statistique. 158: 62–85. arXiv:1708.02723.
  7. ^ Moraga, Paula (2019). Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny. Chapman and Hall/CRC. ISBN 9780367357955.
  8. ^ Lindgren, Finn; Rue, Håvard; Lindström, Johan (2011). "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach". J. R. Statist. Soc. B. 73 (4): 423–498. doi:10.1111/j.1467-9868.2011.00777.x. hdl:20.500.11820/1084d335-e5b4-4867-9245-ec9c4f6f4645. S2CID 120949984.
  9. ^ Lezama-Ochoa, N.; Grazia Pennino, M.; Hall, M. A.; Lopez, J.; Murua, H. (2020). "Using a Bayesian modelling approach (INLA-SPDE) to predict the occurrence of the Spinetail Devil Ray (Mobular mobular)". Scientific Reports. 10 (1): 18822. Bibcode:2020NatSR..1018822L. doi:10.1038/s41598-020-73879-3. PMC 7606447. PMID 33139744.
  10. ^ "R-INLA Project". Retrieved 21 April 2022.

Previous Page Next Page








Responsive image

Responsive image