Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Interval estimation

In statistics, interval estimation is the use of sample data to estimate an interval of possible values of a parameter of interest. This is in contrast to point estimation, which gives a single value.[1]

The most prevalent forms of interval estimation are confidence intervals (a frequentist method) and credible intervals (a Bayesian method).[2] Less common forms include likelihood intervals, fiducial intervals, tolerance intervals, and prediction intervals. For a non-statistical method, interval estimates can be deduced from fuzzy logic.

  1. ^ Neyman, J. (1937). "Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 236 (767). The Royal Society: 333–380. Bibcode:1937RSPTA.236..333N. doi:10.1098/rsta.1937.0005. ISSN 0080-4614. JSTOR 91337. S2CID 19584450. Retrieved 2021-07-15.
  2. ^ Severini, Thomas A. (1991). "On the Relationship between Bayesian and Non-Bayesian Interval Estimates". Journal of the Royal Statistical Society, Series B (Methodological). 53 (3). Wiley: 611–618. doi:10.1111/j.2517-6161.1991.tb01849.x. ISSN 0035-9246.

Previous Page Next Page