Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Laminar flow

The velocity profile associated with laminar flow resembles a deck of playing cards. This flow profile of a fluid in a pipe shows the fluid acting in layers that slide over one another.

Laminar flow (/ˈlæmɪnər/) is the property of fluid particles in fluid dynamics to follow smooth paths in layers, with each layer moving smoothly past the adjacent layers with little or no mixing.[1] At low velocities, the fluid tends to flow without lateral mixing, and adjacent layers slide past one another smoothly. There are no cross-currents perpendicular to the direction of flow, nor eddies or swirls of fluids.[2] In laminar flow, the motion of the particles of the fluid is very orderly with particles close to a solid surface moving in straight lines parallel to that surface.[3] Laminar flow is a flow regime characterized by high momentum diffusion and low momentum convection.

When a fluid is flowing through a closed channel such as a pipe or between two flat plates, either of two types of flow may occur depending on the velocity and viscosity of the fluid: laminar flow or turbulent flow. Laminar flow occurs at lower velocities, below a threshold at which the flow becomes turbulent. The threshold velocity is determined by a dimensionless parameter characterizing the flow called the Reynolds number, which also depends on the viscosity and density of the fluid and dimensions of the channel. Turbulent flow is a less orderly flow regime that is characterized by eddies or small packets of fluid particles, which result in lateral mixing.[2] In non-scientific terms, laminar flow is smooth, while turbulent flow is rough.

  1. ^ Streeter, V.L. (1951-1966) Fluid Mechanics, Section 3.3 (4th edition). McGraw-Hill
  2. ^ a b Geankoplis, Christie John (2003). Transport Processes and Separation Process Principles. Prentice Hall Professional Technical Reference. ISBN 978-0-13-101367-4. Archived from the original on 2015-05-01.
  3. ^ Noakes, Cath; Sleigh, Andrew (January 2009). "Real Fluids". An Introduction to Fluid Mechanics. University of Leeds. Archived from the original on 21 October 2010. Retrieved 23 November 2010.

Previous Page Next Page