Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Maraging steel

Maraging steels (a portmanteau of "martensitic" and "aging") are steels that possess superior strength and toughness without losing ductility. Aging refers to the extended heat-treatment process. These steels are a special class of very-low-carbon ultra-high-strength steels that derive their strength from precipitation of intermetallic compounds rather than from carbon. The principal alloying metal is 15 to 25 wt% nickel.[1] Secondary alloying metals, which include cobalt, molybdenum and titanium, are added to produce intermetallic precipitates.[1]

The first maraging steel was developed by Clarence Gieger Bieber at Inco in the late 1950s. It produced 20 and 25 wt% Ni steels with small additions of aluminium, titanium, and niobium.[2] The intent was to induce age-hardening with the aforementioned intermetallics in an iron-nickel martensitic matrix, and it was discovered that Co and Mo complement each other very well. Commercial production started in December 1960.[3] A rise in the price of Co in the late 1970s led to cobalt-free maraging steels.[4]

The common, non-stainless grades contain 17–19 wt% Ni, 8–12 wt% Co, 3–5 wt% Mo and 0.2–1.6 wt% Ti.[5] Addition of chromium produces corrosion-resistant stainless grades. This also indirectly increases hardenability as they require less Ni; high-Cr, high-Ni steels are generally austenitic and unable to become martensite when heat treated, while lower-Ni steels can.

Alternative variants of Ni-reduced maraging steels are based on alloys of Fe and Mn plus minor additions of Al, Ni and Ti with compositions between Fe-9wt% Mn to Fe-15wt% Mn qualify used.[6] The manganese has an effect similar to nickel, i.e. it stabilizes the austenite phase. Hence, depending on their manganese content, Fe-Mn maraging steels can be fully martensitic after quenching them from the high temperature austenite phase or they can contain retained austenite.[7] The latter effect enables the design of maraging-transformation-induced-plasticity (TRIP) steels.[8]

  1. ^ a b Degarmo, E. Paul; Black, J. T.; Kohser, Ronald A. (2003), Materials and Processes in Manufacturing (9th ed.), Wiley, p. 119, ISBN 0-471-65653-4
  2. ^ U.S. patent 3,093,518
  3. ^ https://nickelinstitute.org/en/library/technical-guides/18-nickel-maraging-steel-engineering-properties-4419/
  4. ^ Sha, W; Guo, Z (2009-10-26). Maraging Steels: Modelling of Microstructure, Properties and Applications. Elsevier.
  5. ^ INCO. "18% Nickel Maraging Steel – Engineering Properties". Nickel Institute.
  6. ^ Raabe, D.; Sandlöbes, S.; Millan, J. J.; Ponge, D.; Assadi, H.; Herbig, M.; Choi, P.P. (2013), "Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: A pathway to ductile martensite", Acta Materialia, 61 (16): 6132–6152, Bibcode:2013AcMat..61.6132R, doi:10.1016/j.actamat.2013.06.055.
  7. ^ Dmitrieva, O.; Ponge, D.; Inden, G.; Millan, J.; Choi, P.; Sietsma, J.; Raabe, D. (2011), "Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation", Acta Materialia, 59 (1): 364–374, arXiv:1402.0232, Bibcode:2011AcMat..59..364D, doi:10.1016/j.actamat.2010.09.042, ISSN 1359-6454, S2CID 13781776
  8. ^ Raabe, D.; Ponge, D.; Dmitrieva, O.; Sander, B. (2009), "Nano-precipitate hardened 1.5 GPa steels with unexpected high ductility", Scripta Materialia, 60 (12): 1141, doi:10.1016/j.scriptamat.2009.02.062

Previous Page Next Page