Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Prime knot

Simplest prime link

In knot theory, a prime knot or prime link is a knot that is, in a certain sense, indecomposable. Specifically, it is a non-trivial knot which cannot be written as the knot sum of two non-trivial knots. Knots that are not prime are said to be composite knots or composite links. It can be a nontrivial problem to determine whether a given knot is prime or not.

A family of examples of prime knots are the torus knots. These are formed by wrapping a circle around a torus p times in one direction and q times in the other, where p and q are coprime integers.

Knots are characterized by their crossing numbers. The simplest prime knot is the trefoil with three crossings. The trefoil is actually a (2, 3)-torus knot. The figure-eight knot, with four crossings, is the simplest non-torus knot. For any positive integer n, there are a finite number of prime knots with n crossings. The first few values for exclusively prime knots (sequence A002863 in the OEIS) and for prime or composite knots (sequence A086825 in the OEIS) are given in the following table.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Number of prime knots
with n crossings
0 0 1 1 2 3 7 21 49 165 552 2176 9988 46972 253293 1388705 8053393 48266466 294130458
Composite knots 0 0 0 0 0 2 1 5 ... ... ... ... ... ...
Total 0 0 1 1 2 5 8 26 ... ... ... ... ... ...

Enantiomorphs are counted only once in this table and the following chart (i.e. a knot and its mirror image are considered equivalent).

A chart of all prime knots with seven or fewer crossings, not including mirror-images, plus the unknot (which is not considered prime).

Previous Page Next Page