Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Strict initial object

In the mathematical discipline of category theory, a strict initial object is an initial object 0 of a category C with the property that every morphism in C with codomain 0 is an isomorphism. In a Cartesian closed category, every initial object is strict.[1] Also, if C is a distributive or extensive category, then the initial object 0 of C is strict.[2]

  1. ^ McLarty, Colin (4 June 1992). Elementary Categories, Elementary Toposes. Clarendon Press. ISBN 0191589497. Retrieved 13 February 2017.
  2. ^ Carboni, Aurelio; Lack, Stephen; Walters, R.F.C. (3 February 1993). "Introduction to extensive and distributive categories". Journal of Pure and Applied Algebra. 84 (2): 145–158. doi:10.1016/0022-4049(93)90035-R.

Previous Page Next Page








Responsive image

Responsive image