Ovaj članak ili neki od njegovih odlomaka nije dovoljno potkrijepljen izvorima (literatura, veb-sajtovi ili drugi izvori). |
Baza nekog vektorskog prostora V nad poljem K je uređeni skup međusobno linearno nezavisnih i ne-nul vektora e = {e1, e2, ... , en}, kojima se, uz množenje skalarima, jednoznačno može predstaviti svaki drugi vektor a iz V:
Odavde slijedi da je ovakav skup također i minimalan, jer ako bi se, na primjer, ei moglo izraziti kao aej + vek, to bi značilo da se vektor ei može izraziti na još jedan način, što više nije jednoznačno.
Kako se u vektorskom prostoru dimenzije n može predstaviti n linearno nezavisnih vektora, njegovu bazu mora činiti najmanje n vektora, što zajedno s gornjim zaključkom daje da baza n-dimenzionog vektorskog prostora V ima tačno n vektora.