Forma de volum

En matemàtiques, una forma de volum sobre una varietat diferenciable és una forma de dimensió màxima (és a dir, una forma diferencial de grau màxim). Així, sobre una varietat M de dimensió n, una forma de volum és una n-forma, una secció del fibrat de rectes Ωn(M) = ⋀n(TM). Una varietat admet una forma de volum que no s'anul·la enlloc si i només si és orientable. Una varietat orientable té un nombre infinit de formes de volum, ja que si es multiplica una forma de volum per una funció s'obté una altra forma de volum. Sobre varietats no orientables, encara es pot definir la noció més feble d'una densitat.

Una forma de volum proporciona un instrument per definir la integral d'una funció sobre una varietat diferenciable. En altres paraules, una forma de volum indueix una mesura respecte a les quals es pot integrar segons el concepte de la integral de Lebesgue. El valor absolut d'una forma de volum és un element de volum. També defineix una mesura, però existeix en qualsevol varietat diferenciable, ja sigui orientable o no.

Les varietats de Kähler, en ser varietats complexes, tenen una orientació de manera natural i, per tant, tenen una forma de volum. Més en general, l'n-sima potència exterior de la forma simplèctica sobre una varietat simplèctica és una forma de volum. Moltes classes de varietats tenen formes de volum canòniques: tenen una estructura addicional que permet l'elecció d'una forma de volum preferida. Les varietats pseudoriemannianes tenen una forma de volum canònica associada.


Forma de volum

Dodaje.pl - Ogłoszenia lokalne