Enghraifft o'r canlynol | maes o fewn mathemateg |
---|---|
Rhan o | mathemateg |
Ffeiliau perthnasol ar Gomin Wicimedia |
Y gangen o fathemateg sy'n ymwneud â siâp, maint a lleoliad rhifau, a nodweddion gofod yw geometreg (Groeg: γεωμετρία; geo- "daear", -metron "measuriad").
Tarddodd geometreg mewn sawl lle gwahanol drwy'r byd, yn annibynnol i'w gilydd, mewn ymgais ymarferol i ateb problemau'n ymwneud â hyd, arwynebedd a chyfaint gyda pheth disgyblaeth gwyddonol, ffurfiol i'w gael erbyn oes Thales yn y 6g CC. Erbyn y 3g roedd Euclid wedi'u ffurfioli ymhellach a cheir ei enw o fewn isddosbarth a adnabyddir heddiw fel geometreg Euclidaidd; dyma'r safon am ganrifoedd wedi hynny.[1] Datblygodd Archimedes dechneg wych i gyfrifo arwynebedd a chyfaint yr hyn a enwir heddiw yn calcwlws cyfannol (neu integrol).[2] Am y pymtheg cant o flynyddoedd dilynol, defnyddiwyd llawer o'i waith i ateb problemau'n ymwneud â mapio lleoliad y sêr a'r planedau. Ystyriwyd, felly, geometreg a seryddiaeth (yn y byd clasurol) yn rhan o'r un gangen (y Quadrivium) o'r saith celfyddyd bwysicaf i berson rhydd.
René Descartes a gyflwynodd y cysyniad o gyfesurynnau i'r astudiaeth ac ar yr un pryd datblygwyd algebra; mae'r ddau hyn yn ffurfio un o gerrig milltir pwysicaf y ddisgyblaeth gan y gellid, bellach, gynrychioli ffurfiau geometrig gyda ffwythiannau a hafaliadau. Yn ei dro (yn y 17g), chwaraeodd hyn ran eithriadol o bwysig yn yr hyn a elwir yn geometreg anfeidraidd. Dangosodd geometreg perspectif, hefyd, fod llawer mwy i geometreg, fel disgyblaeth, na jyglo rhifau. Ac yn sgil hyn, datblygwyd geometreg gwrthrychau gan Euler a Gauss gan arwain at isddosbarthiadau eraill o fewn geometreg a elwir yn dopograffi a geometreg gwahaniaethol.