Gellir rhannu mathemateg yn ddwy ran: mathemateg gymhwysol a mathemateg bur. Mathemateg gymhwysol yw'r weithred o addasu (neu gymhwyso) dulliau mathemategol i wahanol feysydd megis gwyddoniaeth, peirianneg, busnes, cyfrifiadureg a diwydiant. Felly, mae mathemateg gymhwysol yn gyfuniad o wyddoniaeth fathemategol (haniaethol) ar y naill law a gwybodaeth arbenigol o'r byd go iawn ar y llaw arall.
Mae'r term "mathemateg gymhwysol" hefyd yn disgrifio'r arbenigedd proffesiynol lle mae mathemategwyr yn gweithio ar broblemau ymarferol trwy lunio ac astudio modelau mathemategol. Yn y gorffennol, mae cymwysiadau ymarferol wedi ysgogi datblygiad damcaniaethau mathemategol, a ddaeth wedyn yn destun astudiaeth o fewn mathemateg bur lle mae cysyniadau haniaethol yn cael eu hastudio er eu lles eu hunain. Felly, mae gweithgaredd mathemateg gymhwysol yn gysylltiedig iawn â gwaith ymchwil mewn mathemateg bur; mae'r ddau, felly'n gorgyffwrdd.