Enghraifft o'r canlynol | Rhif trosgynnol, rhif real, cysonyn mathemategol, cysonyn UCUM |
---|---|
Ffeiliau perthnasol ar Gomin Wicimedia |
Mae'r cysonyn mathemategol π (a sillefir hefyd fel pi) yn rhif real, anghymarebol sydd yn fras yn hafal i 3.141592654 (i 9 lle degol) ac a gafodd ei enwi gan William Jones, mathemategydd o Gymru. Hwn yw'r gymhareb o gylchedd cylch i'w ddiamedr yn ôl geometreg Ewclidaidd. Mae gan π nifer o ddefnyddiau mewn Mathemateg, Ffiseg a Pheirianneg. Enwau arall am π yw Cysonyn Archimedes a Rhif Ludolph. Dethlir Diwrnod Pi ar 14 Mawrth yn flynyddol.
Fe'i diffinnir mewn geometreg Ewclidaidd fel cymhareb (cylchedd) cylch â'i ddiamedr, ac mae ganddo hefyd amryw o ddiffiniadau tebyg. Mae'r rhif 3.14159 yn ymddangos mewn sawl fformiwla ym mhob maes o fathemateg a ffiseg.[1][2]
Gan ei fod yn Rhif anghymarebol, ni ellir mynegi π fel ffracsiwn cyffredin, er bod ffracsiynau fel 22/7 yn gyffredin a ddefnyddir i'w amcangyfrif. Yn yr un modd, nid yw ei gynrychiolydd degol byth yn dod i ben a byth yn setlo i batrwm ailadroddus. Mae'n ymddangos bod ei ddigidau degol (neu fôn arall ) yn cael eu dosbarthu ar hap, ac fe'u rhagdybir i fodloni math penodol o hap ystadegol.
Mae'n hysbys bod π yn rhif trosgynnol:[1] nid yw'n wraidd unrhyw polynomial â chyfernodau rhesymegol. Mae trosgynniaeth π yn awgrymu ei bod yn amhosib datrys yr her hynafol o sgwario'r cylch gyda chwmpawd a phren mesur!
Roedd gwareiddiadau hynafol fel yr Eifftiaid a'r Babiloniaid, yn gofyn am amcangyfrifon eithaf cywir o π ar gyfer cyfrifiannau ymarferol. Tua 250 CC, creodd y mathemategydd Groegaidd Archimedes algorithm i amcangyfrif π gyda chywirdeb mympwyol. Yn y 5g OC, amcangyfrifodd mathemategwyr Tsieineaidd π i saith digid, tra amcangyfrifodd mathemategwyr Indiaidd hyd at pum digid, y ddau yn defnyddio technegau geometreg. Darganfuwyd y fformiwla gyfrifiadol gyntaf ar gyfer π, yn seiliedig ar gyfresi anfeidrol, mileniwm yn ddiweddarach, pan ddarganfuwyd y gyfres Madhava-Leibniz gan ysgol seryddiaeth a mathemateg Kerala, a ddogfennwyd yn yr Yuktibhāṣā, ac a ysgrifennwyd tua 1530.[3][4]
Ochr yn ochr gyda datblygiad calcwlws, datblygodd y gallu i gyfrifo cannoedd o ddigidau o π, digon ar gyfer yr holl gyfrifiannau gwyddonol ymarferol. Serch hynny, yn yr 20fed a'r 21g, mae mathemategwyr a chyfrifiadurwyr wedi ymestyn cynrychiolaeth degol π i sawl triliwn o ddigidau.[5][6] Y prif gymhelliant dros y cyfrifiannau hyn yw fel achos prawf i ddatblygu algorithmau effeithlon i gyfrifo cyfresi rhifol, yn ogystal â'r ymgais i dorri record.[7][8] Defnyddiwyd y cyfrifiadau helaeth dan sylw hefyd i brofi uwchgyfrifiaduron ac algorithmau lluosi manwl iawn.