Affine Abbildung

Affine Abbildung, die Position des Punktes ist so bestimmt, dass die Projektionslinien auf der Ebene keinen rechten Winkel mit der Affinitäts-achse bilden. Auch zu sehen, wenn beide Ebenen () einen gestreckten Winkel einschließen, dann steht der Strahl (rot) nicht senkrecht auf Animation am Ende 25 s Pause, dazwischen 10 s.
Affine Abbildung, Parallelprojektion einer Ebene in eine andere Ebene
Animation am Ende 25 s Pause, dazwischen 5 s.

In der Geometrie und in der Linearen Algebra, Teilgebieten der Mathematik, ist eine affine Abbildung oder Affinität (auch affine Transformation genannt, insbesondere bei einer bijektiven affinen Abbildung) eine Abbildung zwischen zwei affinen Räumen, bei der Kollinearität, Parallelität und Teilverhältnisse bewahrt bleiben oder gegenstandslos werden. Präziser formuliert:

  1. Die Bilder von Punkten, die auf einer Geraden liegen (d. h. kollinear sind), liegen wieder auf einer Geraden (Invarianz der Kollinearität). Dabei können auch alle – aber dann alle und nicht nur einige – Punkte einer Geraden auf einen Punkt abgebildet werden.
  2. Die Bilder zweier paralleler Geraden sind parallel, wenn keine der beiden Geraden auf einen Punkt abgebildet wird.
  3. Drei verschiedene Punkte, die auf einer Geraden liegen (kollineare Punkte), werden so abgebildet, dass das Teilverhältnis ihrer Bildpunkte mit dem der Urbildpunkte übereinstimmt – es sei denn, alle drei werden auf denselben Bildpunkt abgebildet.

Eine bijektive affine Abbildung eines affinen Raumes auf sich selbst wird Affinität genannt.

In der Schulmathematik und manchen Anwendungsgebieten (zum Beispiel in der Statistik, siehe unten) werden spezielle affine Abbildungen auch lineare Abbildung oder lineare Funktion genannt. Im allgemeinen mathematischen Sprachgebrauch ist eine lineare Abbildung jedoch ein Homomorphismus von Vektorräumen.


Affine Abbildung

Dodaje.pl - Ogłoszenia lokalne